Art of Problem Solving

PaperMath’s sum: Difference between revisions

Papermath (talk | contribs)
No edit summary
Charking (talk | contribs)
m Formatting
Line 1: Line 1:
== PaperMath’s sum==
== Statement ==
Papermath’s sum states,
'''Papermath’s sum''' states,


<math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math>
<math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math>
Line 12: Line 12:
<math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math>
<math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math>


==Proof==
== Proof ==


First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition,
First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition,


Observing that  
Observing that  
<math>\sum_{i=0}^{n-1} {10^i} =  
<math>\sum_{i=0}^{n-1} {10^i} = \frac{10^{n}-1}{9}</math> and <math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math> concludes the proof.
(10^{n}-1)/9</math>
and  
<math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math>
concludes the proof.


==Problems==
== Problems ==
AMC 12A Problem 25


For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
Line 30: Line 25:
<math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math>
<math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math>


==Notes==
([[AMC 12A Problem 25|Source]])
Papermath’s sum was named by the aops user Papermath, and is a very fantastic formula
 
== Notes ==
 
Papermath’s sum was named by the aops user Papermath.
 
==See also==
==See also==
*[[Cyclic sum]]
*[[Cyclic sum]]
*[[Summation]]
*[[Summation]]
Line 39: Line 39:
[[Category:Algebra]]
[[Category:Algebra]]
[[Category:Theorems]]
[[Category:Theorems]]
{{Stub}}

Revision as of 14:15, 2 February 2025

Statement

Papermath’s sum states,

$\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}$

Or

$x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}$

For all real values of $x$, this equation holds true for all nonnegative values of $n$. When $x=1$, this reduces to

$\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}$

Proof

First, note that the $x^2$ part is trivial multiplication, associativity, commutativity, and distributivity over addition,

Observing that $\sum_{i=0}^{n-1} {10^i} = \frac{10^{n}-1}{9}$ and $(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9$ concludes the proof.

Problems

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

(Source)

Notes

Papermath’s sum was named by the aops user Papermath.

See also

This article is a stub. Help us out by expanding it.