2008 AMC 12A Problems/Problem 24: Difference between revisions
Chickendude (talk | contribs) Added Solution - Need help on asymptote |
→Solution: condense + formatting |
||
| Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
<asy> | <center><asy> | ||
unitsize(12mm); | unitsize(12mm); | ||
pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | ||
pair E=(1,0), F=(2,0); | pair E=(1,0), F=(2,0); | ||
draw(C--B--A--C); | draw(C--B--A--C); | ||
draw(A--D); | draw(A--D);draw(D--E);draw(B--F); | ||
draw(D--E); | dot(A);dot(B);dot(C);dot(D);dot(E);dot(F); | ||
draw(B--F); | label("\(C\)",C,SW); | ||
label("\(B\)",B,N); | |||
dot(A); | label("\(A\)",A,SE); | ||
dot(B); | label("\(D\)",D,NW); | ||
dot(C); | label("\(E\)",E,S); | ||
dot(D); | label("\(F\)",F,S); | ||
dot(E); | label("\(60^\circ\)",C+(.1,.1),ENE); | ||
dot(F); | label("\(2\)",1*dir(60),NW); | ||
label("\(2\)",3*dir(60),NW); | |||
label("C",C,SW); | label("\(\theta\)",(7,.4)); | ||
label("B",B,N); | label("\(1\)",(.5,0),S); | ||
label("A",A,SE); | label("\(1\)",(1.5,0),S); | ||
label("D",D,NW); | label("\(x-2\)",(5,0),S); | ||
label("E",E,S); | </asy></center> | ||
label("F",F,S); | |||
label(" | |||
label("2",1*dir(60),NW); | |||
label("2",3*dir(60),NW); | |||
label(" | |||
label("1",(.5,0),S); | |||
label("1",(1.5,0),S); | |||
label("x-2",(5,0),S); | |||
</asy> | |||
<math>\frac{ | Let <math>x = CA</math>. Then <math>\tan\theta = \tan(\angle BAF - \angle DAE)</math>, and since <math>\tan\angle BAF = \frac{2\sqrt{3}}{x-2}</math> and <math>\tan\angle DAE = \frac{\sqrt{3}}{x-1}</math>, we have | ||
< | <cmath>\tan\theta = \frac{\frac{2\sqrt{3}}{x-2} - \frac{\sqrt{3}}{x-1}}{1 + \frac{2\sqrt{3}}{x-2}\cdot\frac{\sqrt{3}}{x-1}}= \frac{x\sqrt{3}}{x^2-3x+8}</cmath> | ||
<math>\ | With calculus, taking the [[derivative]] and setting equal to zero will give the maximum value of <math>\tan \theta</math>. Otherwise, we can apply [[AM-GM]]: | ||
< | <cmath> | ||
\begin{align*} | |||
\frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\ | |||
\frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\ | |||
\frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3}</cmath> | |||
Thus, the minimum is at | |||
<math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math> | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | {{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | ||
Revision as of 12:17, 24 February 2008
Problem
Triangle
has
and
. Point
is the midpoint of
. What is the largest possible value of
?
Solution
![[asy] unitsize(12mm); pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); pair E=(1,0), F=(2,0); draw(C--B--A--C); draw(A--D);draw(D--E);draw(B--F); dot(A);dot(B);dot(C);dot(D);dot(E);dot(F); label("\(C\)",C,SW); label("\(B\)",B,N); label("\(A\)",A,SE); label("\(D\)",D,NW); label("\(E\)",E,S); label("\(F\)",F,S); label("\(60^\circ\)",C+(.1,.1),ENE); label("\(2\)",1*dir(60),NW); label("\(2\)",3*dir(60),NW); label("\(\theta\)",(7,.4)); label("\(1\)",(.5,0),S); label("\(1\)",(1.5,0),S); label("\(x-2\)",(5,0),S); [/asy]](http://latex.artofproblemsolving.com/1/1/2/1128545a032f8a76ab532ab0d377c56d9ca11993.png)
Let
. Then
, and since
and
, we have
With calculus, taking the derivative and setting equal to zero will give the maximum value of
. Otherwise, we can apply AM-GM:
\begin{align*}
\frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\
\frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\
\frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3} (Error compiling LaTeX. Unknown error_msg)
Thus, the minimum is at
.
See Also
| 2008 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |