Art of Problem Solving

PaperMath’s sum: Difference between revisions

Sagaman (talk | contribs)
Sagaman (talk | contribs)
Line 57: Line 57:
==Notes==
==Notes==


PaperMath’s sum was discovered by the aops user PaperMath, as the name implies. It was stolen from Sagaman.
AntandMonkeyDoctor‘s sum was discovered by the aops user AntandMonkeyDoctor, as the name implies. It was stolen from AntandMonkeyDoctor.


==See also==
==See also==

Revision as of 14:51, 22 January 2024

Papermath’s sum

1+1=2

Proof

We will first prove a easier variant of AntandMonkeyDoc’s sum,

$\sum_{i=0}^{2n} {(9 \times 10^i)}=(\sum_{j=0}^n {(9 \times 10^j)})^2 + 9\sum_{k=0}^n {(2 \times 10^k)}$

This is the exact same as

$\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}$

But everything is multiplied by $9$.

Notice that this is the exact same as saying

$\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+9(\underbrace {22\dots}_{n})$

Notice that $9(\underbrace {22\dots}_{n})=2(\underbrace {99\dots}_{n})$

Substituting this into $\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+9(\underbrace {22\dots}_{n})$ yields $\underbrace {9999\dots}_{2n}=(\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})$

Adding $1$ on both sides yields

$10^{2n}= (\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})+1$

Notice that $(\underbrace {99\dots}_{n})^2+2(\underbrace {99\dots}_{n})+1=(\underbrace {99\dots}_{n}+1)^2=(10^n)^2=10^{2n}$

As you can see,

$\sum_{i=0}^{2n} {(9 \times 10^i)}=(\sum_{j=0}^n {(9 \times 10^j)})^2 + 9\sum_{k=0}^n {(2 \times 10^k)}$

Is true since the RHS and LHS are equal

This equation holds true for any values of $n$. Since this is true, we can divide by $9$ on both sides to get

$\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {(3 \times 10^j)})^2 + \sum_{k=0}^n {(2 \times 10^k)}$

And then multiply both sides $x^2$ to get

$\sum_{i=0}^{2n} {(x^2 \times 10^i)}=(\sum_{j=0}^n {(3x \times 10^j)})^2 + \sum_{k=0}^n {(2x^2 \times 10^k)}$

Or

$x^2\sum_{i=0}^{2n} {10^i}=(x \sum_{j=0}^n {(3 \times 10^j)})^2 + x^2\sum_{k=0}^n {(2 \times 10^k)}$

Which proves AntandmonkeyDoctor’s sum

Problems

2018 AMC 12A Problem 25

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

Notes

AntandMonkeyDoctor‘s sum was discovered by the aops user AntandMonkeyDoctor, as the name implies. It was stolen from AntandMonkeyDoctor.

See also