2004 AMC 8 Problems/Problem 14: Difference between revisions
Isabelchen (talk | contribs) |
|||
| Line 54: | Line 54: | ||
Let the bottom left corner be <math>(0,0)</math>. The points would then be <math>(4,0),(0,5),(3,4),</math> and <math>(10,10)</math>. Applying the [[Shoelace Theorem]], | Let the bottom left corner be <math>(0,0)</math>. The points would then be <math>(4,0),(0,5),(3,4),</math> and <math>(10,10)</math>. Applying the [[Shoelace Theorem]], | ||
<cmath>\text{Area} = \frac12 \begin{vmatrix} 4 & 0 \\ 0 & 5 \\ 3 & 4 \\ 10 & 10 \end{vmatrix} = \frac12 |(20+30)-(15+40+40)| = \frac12 |50-95| = \boxed{\textbf{(C)}\ 22\frac12}</cmath> | <cmath>\text{Area} = \frac12 \begin{vmatrix} 4 & 0 \\ 0 & 5 \\ 3 & 4 \\ 10 & 10 \\ 4 & 0\end{vmatrix} = \frac12 |(20+30)-(15+40+40)| = \frac12 |50-95| = \boxed{\textbf{(C)}\ 22\frac12}</cmath> | ||
==Solution 3== | ==Solution 3== | ||
Revision as of 17:49, 3 January 2025
Problem
What is the area enclosed by the geoboard quadrilateral below?
Solution 1
Divide the shape up as above.
Solution 2
Let the bottom left corner be
. The points would then be
and
. Applying the Shoelace Theorem,
Solution 3
The figure contains
interior points and
boundary points. Using Pick's Theorem, the area is
See Also
| 2004 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 13 |
Followed by Problem 15 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.