Quadratic reciprocity: Difference between revisions
m Fixed denominators. |
cleaned the LaTeX a bit; I'll add a proof later |
||
| Line 1: | Line 1: | ||
Let <math>p</math> be a [[prime number|prime]], and let <math>a</math> be any integer | Let <math>p</math> be a [[prime number|prime]], and let <math>a</math> be any integer. Then we can define the [[Legendre symbol]] | ||
<cmath> \genfrac{(}{)}{}{}{a}{p} =\begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ | |||
0 & \text{if } p \text{ divides } a, \\ -1 & \text{otherwise}.\end{cases} </cmath> | |||
We say that <math>a</math> is a '''quadratic residue''' modulo <math>p</math> if there exists an integer <math>n</math> so that <math>n^2\equiv a\pmod p</math>. | We say that <math>a</math> is a '''quadratic residue''' modulo <math>p</math> if there exists an integer <math>n</math> so that <math>n^2\equiv a\pmod p</math>. | ||
Equivalently, we can define the function <math>a \mapsto \genfrac{(}{)}{}{}{a}{p}</math> as the unique nonzero multiplicative [[homomorphism]] of <math>\mathbb{F}_p</math> into <math>\mathbb{R}</math>. | |||
== Quadratic Reciprocity Theorem == | == Quadratic Reciprocity Theorem == | ||
There are three parts. Let <math>p</math> and <math>q</math> be distinct [[odd integer | odd]] primes. Then the following hold: | There are three parts. Let <math>p</math> and <math>q</math> be distinct [[odd integer | odd]] primes. Then the following hold: | ||
<cmath> \begin{align*} | |||
\genfrac{(}{)}{}{}{-1}{p} &= (-1)^{(p-1)/2} , \\ | |||
\genfrac{(}{)}{}{}{2}{p} &= (-1)^{(p^2-1)/8} , \\ | |||
\genfrac{(}{)}{}{}{p}{q} \genfrac{(}{)}{}{}{q}{p} &= (-1)^{(p-1)(q-1)/4} . | |||
\end{align*} </cmath> | |||
This theorem can help us evaluate Legendre symbols, since the following laws also apply: | This theorem can help us evaluate Legendre symbols, since the following laws also apply: | ||
* If <math>a\equiv b\pmod{p}</math>, then <math>\genfrac{(}{)}{}{}{a}{p} = \genfrac{(}{)}{}{}{b}{p}</math>. | |||
* If <math>a\equiv b\pmod{p}</math>, then <math>\ | * <math>\genfrac{(}{)}{}{}{ab}{p}\right) = \genfrac{(}{)}{}{}{a}{p} \genfrac{(}{)}{}{}{b}{p}</math>. | ||
* <math>\ | |||
There also exist quadratic reciprocity laws in other [[ring of integers|rings of integers]]. (I'll put that here later if I remember.) | There also exist quadratic reciprocity laws in other [[ring of integers|rings of integers]]. (I'll put that here later if I remember.) | ||
Revision as of 21:09, 25 September 2008
Let
be a prime, and let
be any integer. Then we can define the Legendre symbol
We say that
is a quadratic residue modulo
if there exists an integer
so that
.
Equivalently, we can define the function
as the unique nonzero multiplicative homomorphism of
into
.
Quadratic Reciprocity Theorem
There are three parts. Let
and
be distinct odd primes. Then the following hold:
This theorem can help us evaluate Legendre symbols, since the following laws also apply:
- If
, then
. - $\genfrac{(}{)}{}{}{ab}{p}\right) = \genfrac{(}{)}{}{}{a}{p} \genfrac{(}{)}{}{}{b}{p}$ (Error compiling LaTeX. Unknown error_msg).
There also exist quadratic reciprocity laws in other rings of integers. (I'll put that here later if I remember.)
.