1991 IMO Problems/Problem 5: Difference between revisions
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\ | Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\angle CAB</math>, <math>\angle ABC</math>, <math>\angle BCA</math>, respectively. | ||
Let <math>\alpha_{1}</math> , <math>\alpha_{2}</math>, and <math>\alpha_{3}</math> be <math>\ | Let <math>\alpha_{1}</math> , <math>\alpha_{2}</math>, and <math>\alpha_{3}</math> be <math>\angle PAB</math>, <math>\angle PBC</math>, <math>\angle PCA</math>, respcetively. | ||
Using law of sines on <math>\Delta PAB</math> we get: <math>\frac{\left| PA \right|}{sin(A_{2}-\alpha_{2})}=\frac{\left| PB \right|}{sin(\alpha_{1})}</math>, therefore, <math>\frac{\left| PA \right|}{\left| PB \right|}=\frac{sin(A_{2}-\alpha_{2})}{sin(\alpha_{1})}</math> | Using law of sines on <math>\Delta PAB</math> we get: <math>\frac{\left| PA \right|}{sin(A_{2}-\alpha_{2})}=\frac{\left| PB \right|}{sin(\alpha_{1})}</math>, therefore, <math>\frac{\left| PA \right|}{\left| PB \right|}=\frac{sin(A_{2}-\alpha_{2})}{sin(\alpha_{1})}</math> | ||
Revision as of 12:29, 12 November 2023
Problem
Let
be a triangle and
an interior point of
. Show that at least one of the angles
is less than or equal to
.
Solution
Let
,
, and
be
,
,
, respectively.
Let
,
, and
be
,
,
, respcetively.
Using law of sines on
we get:
, therefore,
Using law of sines on
we get:
, therefore,
Using law of sines on
we get:
, therefore,
Multiply all three equations we get:
Using AM-GM we get:
. [Inequality 1]
Note that for
,
decreases with increasing
and fixed
Therefore,
decreases with increasing
and fixed
From trigonometric identity:
,
since
, then:
Therefore,
and also,
Adding these two inequalities we get:
.
. [Inequality 2]
Combining [Inequality 1] and [Inequality 2] we see the following:
This implies that for at least one of the values of
,
,or
, the following is true:
or
Which means that for at least one of the values of
,
,or
, the following is true:
Therefore, at least one of the angles
is less than or equal to
.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.