2022 AMC 12B Problems/Problem 19: Difference between revisions
| Line 8: | Line 8: | ||
\textbf{(D)}\ 56 \qquad | \textbf{(D)}\ 56 \qquad | ||
\textbf{(E)}\ 60 \qquad</math> | \textbf{(E)}\ 60 \qquad</math> | ||
== Diagram == | |||
<asy> | |||
import geometry; | |||
unitsize(2cm); | |||
real arg(pair p) { | |||
return atan2(p.y, p.x) * 180/pi; | |||
} | |||
pair G=(0,0),E=(1,0),A=(1/2,sqrt(3)/2),D=1.5*G-0.5*A,C=2*E-A,B=2*D-C; | |||
pair t(pair p) { | |||
return rotate(-arg(dir(B--C)))*p; | |||
} | |||
path t(path p) { | |||
return rotate(-arg(dir(B--C)))*p; | |||
} | |||
void d(path p, pen q = black+linewidth(1.5)) { | |||
draw(t(p),q); | |||
} | |||
void o(pair p, pen q = 5+black) { | |||
dot(t(p),q); | |||
} | |||
void l(string s, pair p, pair d) { | |||
label(s, t(p),d); | |||
} | |||
d(A--B--C--cycle); | |||
d(A--D); | |||
d(B--E); | |||
o(A); | |||
o(B); | |||
o(C); | |||
o(D); | |||
o(E); | |||
o(G); | |||
l("$A$",A,N); | |||
l("$B$",B,SW); | |||
l("$C$",C,SE); | |||
l("$D$",D,S); | |||
l("$E$",E,NE); | |||
l("$G$",G,NW); | |||
</asy> | |||
==Solution 1: Law of Cosines== | ==Solution 1: Law of Cosines== | ||
Revision as of 03:59, 18 November 2022
Problem
In
medians
and
intersect at
and
is equilateral. Then
can be written as
, where
and
are relatively prime positive integers and
is a positive integer not divisible by the square of any prime. What is
?
Diagram
Solution 1: Law of Cosines
Note: can someone add the diagram here please, I don't know how to do that
Let
. Since
is the midpoint of
,
must also be
.
Since the centroid splits the median in a
ratio,
must be equal to
and
must be equal to
.
Applying Law of Cosines on
and
yields
and
. Finally, applying Law of Cosines on
yields
. The requested sum is
.
See Also
| 2022 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.