Art of Problem Solving

2022 AMC 10A Problems/Problem 8: Difference between revisions

Mrthinker (talk | contribs)
Ehuang0531 (talk | contribs)
add redirect notice, some wording edits
Line 1: Line 1:
{{duplicate|[[2022 AMC 10A Problems/Problem 8|2022 AMC 10A #8]] and [[2022 AMC 12A Problems/Problem 6|2022 AMC 12A #6]]}}
==Problem==
==Problem==


A data set consists of <math>6</math> not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The
A data set consists of <math>6</math> (not distinct) positive integers: <math>1</math>, <math>7</math>, <math>5</math>, <math>2</math>, <math>5</math>, and <math>X</math>. The average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is the sum of all positive values of <math>X</math>?
average (arithmetic mean) of the <math>6</math> numbers equals a value in the data set. What is
the sum of all positive values of <math>X</math>?


<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>
<math>\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40</math>


==Solution (Casework)==
==Solution (Casework)==
First, note that <math>1+7+5+2+5=20</math>. Then, there are 3 cases.


'''Case 1: the mean is <math>5</math>'''
First, note that <math>1+7+5+2+5=20</math>. There are 3 possible cases:
 
'''Case 1: the mean is <math>5</math>.'''


<math>X = 5 \cdot 6 - 20 = 10</math>.
<math>X = 5 \cdot 6 - 20 = 10</math>.


'''Case 2: the mean is <math>7</math>'''
'''Case 2: the mean is <math>7</math>.'''


<math>X = 7 \cdot 6 - 20 = 22</math>.
<math>X = 7 \cdot 6 - 20 = 22</math>.


'''Case 3: the mean is <math>X</math>'''
'''Case 3: the mean is <math>X</math>.'''


<math>\frac{20+X}{6} = X \Rightarrow X=4</math>.
<math>\frac{20+X}{6} = X \Rightarrow X=4</math>.


Hence, adding up the cases, the answer is <math>10+22+4=\boxed{\textbf{(D) }36}</math>.
Hence, the answer is <math>10+22+4=\boxed{\textbf{(D) }36}</math>.


~MrThinker
~MrThinker


==Video Solution 1 (Quick and Simple)==
==Video Solution 1 (Quick and Simple)==
https://youtu.be/8s6SngtEBY4
https://youtu.be/8s6SngtEBY4


Line 32: Line 34:


== See Also ==
== See Also ==
{{AMC10 box|year=2022|ab=A|num-b=7|num-a=9}}
{{AMC10 box|year=2022|ab=A|num-b=7|num-a=9}}
{{AMC12 box|year=2022|ab=A|num-b=5|num-a=7}}
{{AMC12 box|year=2022|ab=A|num-b=5|num-a=7}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 17:24, 17 November 2022

The following problem is from both the 2022 AMC 10A #8 and 2022 AMC 12A #6, so both problems redirect to this page.

Problem

A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$?

$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$

Solution (Casework)

First, note that $1+7+5+2+5=20$. There are 3 possible cases:

Case 1: the mean is $5$.

$X = 5 \cdot 6 - 20 = 10$.

Case 2: the mean is $7$.

$X = 7 \cdot 6 - 20 = 22$.

Case 3: the mean is $X$.

$\frac{20+X}{6} = X \Rightarrow X=4$.

Hence, the answer is $10+22+4=\boxed{\textbf{(D) }36}$.

~MrThinker

Video Solution 1 (Quick and Simple)

https://youtu.be/8s6SngtEBY4

~Education, the Study of Everything

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.