2022 AMC 12A Problems/Problem 20: Difference between revisions
| Line 8: | Line 8: | ||
==Solution 2 (Cheese)== | ==Solution 2 (Cheese)== | ||
Notice that the question never says what the height of the trapezoid is; the only property we know about it is that <math>AC=BD</math>. Therefore, we can say WLOG that the height of the trapezoid is <math>0 </math>and all <math>5 </math>points, including <math>P</math>, lie on the same line with <math>PA=AB=BC=CD=1</math>. Notice that this satisfies the problem requirements because <math>PA=1, PB=2, PC=3,PD=4</math>, and <math>AC=BD=2</math>. | Notice that the question never says what the height of the trapezoid is; the only property we know about it is that <math>AC=BD</math>. Therefore, we can say WLOG that the height of the trapezoid is <math>0</math> and all <math>5</math> points, including <math>P</math>, lie on the same line with <math>PA=AB=BC=CD=1</math>. Notice that this satisfies the problem requirements because <math>PA=1, PB=2, PC=3,PD=4</math>, and <math>AC=BD=2</math>. | ||
Now all we have to find is <math>\frac{BC}{AD} = \frac{1}{3}= \boxed{B}</math> | Now all we have to find is <math>\frac{BC}{AD} = \frac{1}{3}= \boxed{B}</math> | ||
~KingRavi | ~KingRavi | ||
Revision as of 01:29, 12 November 2022
Problem
Isosceles trapezoid
has parallel sides
and
with
and
There is a point
in the plane such that
and
What is
Solution 1
Consider the reflection
of
over the perpendicular bisector of
, creating two new isosceles trapezoids
and
. Under this reflection,
,
,
, and
. By Ptolmey's theorem
Thus
and
; dividing these two equations and taking the reciprocal yields
.
Solution 2 (Cheese)
Notice that the question never says what the height of the trapezoid is; the only property we know about it is that
. Therefore, we can say WLOG that the height of the trapezoid is
and all
points, including
, lie on the same line with
. Notice that this satisfies the problem requirements because
, and
.
Now all we have to find is
~KingRavi
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
| 2022 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2022 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 22 |
Followed by Problem 24 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.