Art of Problem Solving

2022 AMC 12A Problems/Problem 14: Difference between revisions

Sugar rush (talk | contribs)
Choice E is equal to 3, not 5/2
Hithere22702 (talk | contribs)
No edit summary
Line 4: Line 4:
<math>\textbf{(A)}~\frac{3}{2}\qquad\textbf{(B)}~\frac{7}{4}\qquad\textbf{(C)}~2\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~3</math>
<math>\textbf{(A)}~\frac{3}{2}\qquad\textbf{(B)}~\frac{7}{4}\qquad\textbf{(C)}~2\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~3</math>


==Solution==
==Solution 1==
Let <math>\text{log } 2 = x</math>. The expression then becomes <cmath>(1+x)^3+(1-x)^3+(3x)(-2x)=\boxed{2}.</cmath>
Let <math>\text{log } 2 = x</math>. The expression then becomes <cmath>(1+x)^3+(1-x)^3+(3x)(-2x)=\boxed{2}.</cmath>


-bluelinfish
-bluelinfish
==Solution 2==
Using sum of cubes
<cmath>(\log 5)^{3}+(\log 20)^{3}</cmath>
<cmath>= (\log 5 + \log 20)((\log 5)^{2}-(\log 5)(\log 20) + (\log 20)^{2})</cmath>
<cmath>= 2((\log 5)^{2}-(\log 5)(2\log 2 + \log 5) + (2\log 2 + \log 5)^{2})</cmath>
Let x = <math>\log 5</math> and y = <math>\log 2</math>, so <math>x+y=1</math>
The entire expression becomes
<cmath>2(x^2-x(2y+x)+(2y+x)^2)-6y^2</cmath>
<cmath>=2(x^2+2xy+4y^2-3y^2)</cmath>
<cmath>=2(x+y)^2 = \boxed{2}</cmath>
~Hithere22702


==See Also==
==See Also==
{{AMC12 box|year=2022|ab=A|num-b=13|num-a=15}}
{{AMC12 box|year=2022|ab=A|num-b=13|num-a=15}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 14:06, 14 November 2022

Problem

What is the value of \[(\log 5)^{3}+(\log 20)^{3}+(\log 8)(\log 0.25)\] where $\log$ denotes the base-ten logarithm?

$\textbf{(A)}~\frac{3}{2}\qquad\textbf{(B)}~\frac{7}{4}\qquad\textbf{(C)}~2\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~3$

Solution 1

Let $\text{log } 2 = x$. The expression then becomes \[(1+x)^3+(1-x)^3+(3x)(-2x)=\boxed{2}.\]

-bluelinfish

Solution 2

Using sum of cubes \[(\log 5)^{3}+(\log 20)^{3}\] \[= (\log 5 + \log 20)((\log 5)^{2}-(\log 5)(\log 20) + (\log 20)^{2})\] \[= 2((\log 5)^{2}-(\log 5)(2\log 2 + \log 5) + (2\log 2 + \log 5)^{2})\] Let x = $\log 5$ and y = $\log 2$, so $x+y=1$

The entire expression becomes \[2(x^2-x(2y+x)+(2y+x)^2)-6y^2\] \[=2(x^2+2xy+4y^2-3y^2)\] \[=2(x+y)^2 = \boxed{2}\]

~Hithere22702

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.