2018 UNCO Math Contest II Problems/Problem 8: Difference between revisions
| Line 11: | Line 11: | ||
For <math>p(0)</math>, | For <math>p(0)</math>, | ||
<math>(0)^{2018} + (0)^{1776}-3(0)^4-3 = ((0)^3 - (0))Q( | <math>(0)^{2018} + (0)^{1776}-3(0)^4-3 = ((0)^3 - (0))Q(0) + (A(0)^2 + B(0) + C)</math> | ||
<math>C=-3</math> | <math>C=-3</math> | ||
| Line 17: | Line 17: | ||
For <math>p(1)</math>, | For <math>p(1)</math>, | ||
<math>(1)^{2018} + (1)^{1776}-3(1)^4-3 = ((1)^3 - (1))Q( | <math>(1)^{2018} + (1)^{1776}-3(1)^4-3 = ((1)^3 - (1))Q(1) + (A(1)^2 + B(1) + C)</math> | ||
<math>1 + 1 - 3 -3 = A + B - 3</math> | <math>1 + 1 - 3 -3 = A + B - 3</math> | ||
| Line 25: | Line 25: | ||
For <math>p(-1)</math> | For <math>p(-1)</math> | ||
<math>(-1)^{2018} + (-1)^{1776}-3(-1)^4-3 = ((-1)^3 - (-1))Q( | <math>(-1)^{2018} + (-1)^{1776}-3(-1)^4-3 = ((-1)^3 - (-1))Q(-1) + (A(-1)^2 + B(-1) + C)</math> | ||
<math>1 + 1 -3 -3 = A - B + -3</math> | <math>1 + 1 -3 -3 = A - B + -3</math> | ||
Revision as of 19:18, 26 September 2022
Problem
Let
. Find the remainder when you divide
by
Solution
Let
. Find the remainder when you divide
by
By the division algorithm, let
for some quotient
Consider the roots of
For
,
For
,
For
Solving, we get
and
the remainder is
See also
| 2018 UNCO Math Contest II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 7 |
Followed by Problem 9 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 | ||
| All UNCO Math Contest Problems and Solutions | ||