User:Temperal/The Problem Solver's Resource5: Difference between revisions
→Theorems and Properties: left, right |
switch |
||
| Line 4: | Line 4: | ||
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span> | |+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span> | ||
|- | |- | ||
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page | | style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 7}} | ||
==<span style="font-size:20px; color: blue;"> | ==<span style="font-size:20px; color: blue;">Combinatorics</span>== | ||
This section | This section cover combinatorics, and some binomial/multinomial facts. | ||
=== | <!-- will fill in later! --> | ||
===Permutations=== | |||
The factorial of a number <math>n</math> is <math>n(n-1)(n-2)...(1)</math> or also as <math>\prod_{a=0}^{n-1}(n-a)</math>,and is denoted by <math>n!</math>. | |||
Also, <math>0!=1</math>. | |||
The number of ways of arranging <math>n</math> distinct objects in a straight line is <math>n!</math>. This is also known as a permutation, and can be notated <math>\,_{n}P_{r}</math> | |||
===Combinations=== | |||
The number of ways of choosing <math>n</math> objects from a set of <math>r</math> objects is <math>\frac{n!}{r!(n-r)!}</math>, which is notated as either <math>\,_{n}C_{r}</math> or <math>\binom{n}{r}</math>. (The latter notation is also known as taking the binomial coefficient. | |||
* | ===Binomials and Multinomials=== | ||
*Binomial Theorem: <math>(x+y)^n=\sum_{r=0}^{n}x^{n-r}y^r</math> | |||
*Multinomial Coefficients: The number of ways of ordering <math>n</math> objects when <math>r_1</math> of them are of one type, <math>r_2</math> of them are of a second type, ... and <math>r_s</math> of them of another type is <math>\frac{n!}{r_1!r_2!...r_s!}</math> | |||
*Multinomial Theorem: <math>(x_1+x_2+x_3...+x_s)^n=\sum \frac{n!}{r_1!r_2!...r_s!} x_1+x_2+x_3...+x_s</math>. The summation is taken over all sums <math>\sum_{i=1}^{s}r_i</math> so that <math>\sum_{i=1}^{s}r_i=n</math>. | |||
[[User:Temperal/The Problem Solver's Resource6|Back to page 6]] | [[User:Temperal/The Problem Solver's Resource8|Continue to page 8]] | |||
[[User:Temperal/The Problem Solver's | |||
|}<br /><br /> | |}<br /><br /> | ||
Revision as of 11:55, 6 October 2007
CombinatoricsThis section cover combinatorics, and some binomial/multinomial facts. PermutationsThe factorial of a number Also, The number of ways of arranging CombinationsThe number of ways of choosing Binomials and Multinomials
|
,and is denoted by