Art of Problem Solving

User:Temperal/The Problem Solver's Resource3: Difference between revisions

Temperal (talk | contribs)
m explicit formulas
Line 11: Line 11:


===Rules of Summation===
===Rules of Summation===
<math>\sum_{i=a}^{b}x+y=\sum_{i=a}^{b}x+\sum_{i=a}^{b}y</math>
<math>\sum_{i=a}^{b}f(i)+g(i)=\sum_{i=a}^{b}f(i)+\sum_{i=a}^{b}g(i)</math>


<math>\sum_{i=a}^{b}x\cdot y=x\cdot \sum_{i=a}^{b}y=y\cdot \sum_{i=a}^{b}x</math>
<math>\sum_{i=a}^{b}c\cdot f(i)=c\cdot \sum_{i=a}^{b}f(i)</math>
 
<math>\sum_{i=1}^{n} i= \frac{n(n+1)}{2}</math>, and in general <math>\sum_{i=a}^{b} i= \frac{(b-a+1)(a+b)}{2}</math>
 
<math>\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}</math>
 
<math>\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \left(\frac{n(n+1)}{2}\right)^2</math>


<!--there are others, I forgot what they were. Could someone please fill them in? -->
<!--there are others, I forgot what they were. Could someone please fill them in? -->
Line 19: Line 25:
===Rules of Products===
===Rules of Products===


<math>\prod_{i=a}^{b}x+y+....+z=(x+y+....z)^(b-a+1)</math>
<math>\prod_{i=a}^{b}x=x^{(b-a+1)}</math>


<math>\prod_{i=a}^{b}x\cdot y=x^(b-a+1)y^(b-a+1)</math>
<math>\prod_{i=a}^{b}x\cdot y=x^{(b-a+1)}y^{(b-a+1)}</math>


<!-- same as above, there are others.... but no fancy ones like divergence/convergence, please -->
<!-- same as above, there are others.... but no fancy ones like divergence/convergence, please -->

Revision as of 17:44, 29 September 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 3.

Summations and Products

Definitions

  • Summations: $\sum_{i=a}^{b}c_i=c_a+c_{a+1}+c_{a+2}...+c_{b-1}+c_{b}$
  • Products: $\prod_{i=a}^{b}c_i=c_a\cdot c_{a+1}\cdot c_{a+2}...c\dot c_{b-1}\cdot c_{b}$

Rules of Summation

$\sum_{i=a}^{b}f(i)+g(i)=\sum_{i=a}^{b}f(i)+\sum_{i=a}^{b}g(i)$

$\sum_{i=a}^{b}c\cdot f(i)=c\cdot \sum_{i=a}^{b}f(i)$

$\sum_{i=1}^{n} i= \frac{n(n+1)}{2}$, and in general $\sum_{i=a}^{b} i= \frac{(b-a+1)(a+b)}{2}$

$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \left(\frac{n(n+1)}{2}\right)^2$


Rules of Products

$\prod_{i=a}^{b}x=x^{(b-a+1)}$

$\prod_{i=a}^{b}x\cdot y=x^{(b-a+1)}y^{(b-a+1)}$


Back to page 2 | Continue to page 4