2022 AIME II Problems/Problem 15: Difference between revisions
No edit summary |
No edit summary |
||
| Line 33: | Line 33: | ||
</asy> | </asy> | ||
==Solution== | ==Solution 1== | ||
First observe that <math>AO_2 = O_2D</math> and <math>BO_1 = O_1C</math>. Let points <math>A'</math> and <math>B'</math> be the reflections of <math>A</math> and <math>B</math>, respectively, about the perpendicular bisector of <math>\overline{O_1O_2}</math>. Then quadrilaterals <math>ABO_1O_2</math> and <math>A'B'O_2O_1</math> are congruent, so hexagons <math>ABO_1CDO_2</math> and <math>B'A'O_1CDO_2</math> have the same area. Furthermore, triangles <math>DO_2B'</math> and <math>A'O_1C</math> are congruent, so <math>B'D = A'C</math> and quadrilateral <math>B'A'CD</math> is an isosceles trapezoid. | First observe that <math>AO_2 = O_2D</math> and <math>BO_1 = O_1C</math>. Let points <math>A'</math> and <math>B'</math> be the reflections of <math>A</math> and <math>B</math>, respectively, about the perpendicular bisector of <math>\overline{O_1O_2}</math>. Then quadrilaterals <math>ABO_1O_2</math> and <math>A'B'O_2O_1</math> are congruent, so hexagons <math>ABO_1CDO_2</math> and <math>B'A'O_1CDO_2</math> have the same area. Furthermore, triangles <math>DO_2B'</math> and <math>A'O_1C</math> are congruent, so <math>B'D = A'C</math> and quadrilateral <math>B'A'CD</math> is an isosceles trapezoid. | ||
<asy> | <asy> | ||
| Line 64: | Line 64: | ||
~djmathman | ~djmathman | ||
==Solution 2== | |||
Denote by <math>O</math> the center of <math>\Omega</math>. | |||
Denote by <math>r</math> the radius of <math>\Omega</math>. | |||
We have <math>O_1</math>, <math>O_2</math>, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> are all on circle <math>\Omega</math>. | |||
Denote <math>\angle O_1 O O_2 = 2 \theta</math>. | |||
Denote <math>\angle O_1 O B = \alpha</math>. | |||
Denote <math>\angle O_2 O A = \beta</math>. | |||
Because <math>B</math> and <math>C</math> are on circles <math>\omega_1</math> and <math>\Omega</math>, <math>BC</math> is a perpendicular bisector of <math>O_1 O</math>. Hence, <math>\angle O_1 O C = \alpha</math>. | |||
Because <math>A</math> and <math>D</math> are on circles <math>\omega_2</math> and <math>\Omega</math>, <math>AD</math> is a perpendicular bisector of <math>O_2 O</math>. Hence, <math>\angle O_2 O D = \beta</math>. | |||
In <math>\triangle O O_1 O_2</math>, | |||
<cmath> | |||
\[ | |||
O_1 O_2 = 2 r \sin \theta . | |||
\] | |||
</cmath> | |||
Hence, | |||
<cmath> | |||
\[ | |||
2 r \sin \theta = 15 . | |||
\] | |||
</cmath> | |||
In <math>\triangle O AB</math>, | |||
<cmath> | |||
\begin{align*} | |||
AB & = 2 r \sin \frac{2 \theta - \alpha - \beta}{2} \\ | |||
& = 2 r \sin \theta \cos \frac{\alpha + \beta}{2} | |||
- 2 r \cos \theta \sin \frac{\alpha + \beta}{2} \\ | |||
& = 15 \cos \frac{\alpha + \beta}{2} | |||
- 2 r \cos \theta \sin \frac{\alpha + \beta}{2} . | |||
\end{align*} | |||
</cmath> | |||
Hence, | |||
<cmath> | |||
\[ | |||
15 \cos \frac{\alpha + \beta}{2} | |||
- 2 r \cos \theta \sin \frac{\alpha + \beta}{2} | |||
= 2 . \hspace{1cm} (1) | |||
\] | |||
</cmath> | |||
In <math>\triangle O CD</math>, | |||
<cmath> | |||
\begin{align*} | |||
CD & = 2 r \sin \frac{360^\circ - 2 \theta - \alpha - \beta}{2} \\ | |||
& = 2 r \sin \left( \theta + \frac{\alpha + \beta}{2} \right) \\ | |||
& = 2 r \sin \theta \cos \frac{\alpha + \beta}{2} | |||
+ 2 r \cos \theta \sin \frac{\alpha + \beta}{2} \\ | |||
& = 15 \cos \frac{\alpha + \beta}{2} | |||
+ 2 r \cos \theta \sin \frac{\alpha + \beta}{2} . | |||
\end{align*} | |||
</cmath> | |||
Hence, | |||
<cmath> | |||
\[ | |||
15 \cos \frac{\alpha + \beta}{2} | |||
+ 2 r \cos \theta \sin \frac{\alpha + \beta}{2} | |||
= 16 . \hspace{1cm} (2) | |||
\] | |||
</cmath> | |||
Taking <math>\frac{(1) + (2)}{30}</math>, we get <math>\cos \frac{\alpha + \beta}{2} = \frac{3}{5}</math>. | |||
Thus, <math>\sin \frac{\alpha + \beta}{2} = \frac{4}{5}</math>. | |||
Taking these into (1), we get <math>2 r \cos \theta = \frac{35}{4}</math>. | |||
Hence, | |||
<cmath> | |||
\begin{align*} | |||
2 r & = \sqrt{ \left( 2 r \sin \theta \right)^2 + \left( 2 r \cos \theta \right)^2} \\ | |||
& = \frac{5}{4} \sqrt{193} . | |||
\end{align*} | |||
</cmath> | |||
Hence, <math>\cos \theta = \frac{7}{\sqrt{193}}</math>. | |||
In <math>\triangle O O_1 B</math>, | |||
<cmath> | |||
\[ | |||
O_1 B = 2 r \sin \frac{\alpha}{2} . | |||
\] | |||
</cmath> | |||
In <math>\triangle O O_2 A</math>, by applying the law of sines, we get | |||
<cmath> | |||
\[ | |||
O_2 A = 2 r \sin \frac{\beta}{2} . | |||
\] | |||
</cmath> | |||
Because circles <math>\omega_1</math> and <math>\omega_2</math> are externally tangent, <math>B</math> is on circle <math>\omega_1</math>, <math>A</math> is on circle <math>\omega_2</math>, | |||
<cmath> | |||
\begin{align*} | |||
O_1 O_2 & = O_1 B + O_2 A \\ | |||
& = 2 r \sin \frac{\alpha}{2} + 2 r \sin \frac{\beta}{2} \\ | |||
& = 2 r \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right) . | |||
\end{align*} | |||
</cmath> | |||
Thus, <math>\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} = \frac{12}{\sqrt{193}}</math>. | |||
Now, we compute <math>\sin \alpha</math> and <math>\sin \beta</math>. | |||
Recall <math>\cos \frac{\alpha + \beta}{2} = \frac{3}{5}</math> and <math>\sin \frac{\alpha + \beta}{2} = \frac{4}{5}</math>. | |||
Thus, <math>e^{i \frac{\alpha}{2}} e^{i \frac{\beta}{2}} = e^{i \frac{\alpha + \beta}{2}} = \frac{3}{5} + i \frac{4}{5}</math>. | |||
We also have | |||
<cmath> | |||
\begin{align*} | |||
\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} | |||
& = \frac{1}{2i} \left( e^{i \frac{\alpha}{2}} - e^{-i \frac{\alpha}{2}} | |||
+ e^{i \frac{\beta}{2}} - e^{-i \frac{\beta}{2}} \right) \\ | |||
& = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \frac{\alpha + \beta}{2}} } \right) | |||
\left( e^{i \frac{\alpha}{2}} + e^{i \frac{\beta}{2}} \right) | |||
. | |||
\end{align*} | |||
</cmath> | |||
Thus, | |||
<cmath> | |||
\begin{align*} | |||
\sin \alpha + \sin \beta | |||
& = \frac{1}{2i} \left( e^{i \alpha} - e^{-i \alpha} | |||
+ e^{i \beta} - e^{-i \beta} \right) \\ | |||
& = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | |||
\left( e^{i \alpha} + e^{i \beta} \right) \\ | |||
& = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | |||
\left( | |||
\left( e^{i \frac{\alpha}{2}} + e^{i \frac{\beta}{2}} \right)^2 | |||
- 2 e^{i \frac{\alpha + \beta}{2}} | |||
\right) \\ | |||
& = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | |||
\left( | |||
\left( \frac{2 i \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right)}{1 - \frac{1}{e^{i \frac{\alpha + \beta}{2}} }} \right)^2 | |||
- 2 e^{i \frac{\alpha + \beta}{2}} | |||
\right) \\ | |||
& = - \frac{1}{i} \left( e^{i \frac{\alpha + \beta}{2}} - e^{-i \frac{\alpha + \beta}{2}} \right) | |||
\left( | |||
\frac{2 \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right)^2} | |||
{e^{i \frac{\alpha + \beta}{2}} + e^{-i \frac{\alpha + \beta}{2}} - 2 } | |||
+ 1 | |||
\right) \\ | |||
& = \frac{167 \cdot 8}{193 \cdot 5 } . | |||
\end{align*} | |||
</cmath> | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
{\rm Area} \ ABO_1CDO_2 | |||
& = {\rm Area} \ \triangle O_3 AB + {\rm Area} \ \triangle O_3 BO_1 | |||
+ {\rm Area} \ \triangle O_3 O_1 C \\ | |||
& \quad + {\rm Area} \ \triangle O_3 C D | |||
+ {\rm Area} \ \triangle O_3 D O_2 + {\rm Area} \ \triangle O_3 O_2 A \\ | |||
& = \frac{1}{2} r^2 \left( | |||
\sin \left( 2 \theta - \alpha - \beta \right) + \sin \alpha + \sin \alpha | |||
+ \sin \left( 360^\circ - 2 \theta - \alpha - \beta \right) | |||
+ \sin \beta + \sin \beta \right) \\ | |||
& = \frac{1}{2} r^2 \left( | |||
\sin \left( 2 \theta - \alpha - \beta \right) | |||
- \sin \left( 2 \theta + \alpha + \beta \right) | |||
+ 2 \sin \alpha + 2 \sin \beta | |||
\right) \\ | |||
& = r^2 \left( | |||
- \cos 2 \theta \sin \left( \alpha + \beta \right) | |||
+ \sin \alpha + \sin \beta | |||
\right) \\ | |||
& = r^2 \left( \left( 1 - 2 \cos^2 \theta \right) 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha + \beta}{2} | |||
+ \sin \alpha + \sin \beta \right) \\ | |||
& = \boxed{\textbf{(140) }} . | |||
\end{align*} | |||
</cmath> | |||
~Steven Chen (www.professorchenedu.com) | |||
==See Also== | ==See Also== | ||
Revision as of 20:44, 18 February 2022
Problem
Two externally tangent circles
and
have centers
and
, respectively. A third circle
passing through
and
intersects
at
and
and
at
and
, as shown. Suppose that
,
,
, and
is a convex hexagon. Find the area of this hexagon.
Solution 1
First observe that
and
. Let points
and
be the reflections of
and
, respectively, about the perpendicular bisector of
. Then quadrilaterals
and
are congruent, so hexagons
and
have the same area. Furthermore, triangles
and
are congruent, so
and quadrilateral
is an isosceles trapezoid.
Next, remark that
, so quadrilateral
is also an isosceles trapezoid; in turn,
, and similarly
. Thus, Ptolmey's theorem on
yields
, whence
. Let
. The Law of Cosines on triangle
yields
and hence
. Thus the distance between bases
and
is
(in fact,
is a
triangle with a
triangle removed), which implies the area of
is
.
Now let
and
; the tangency of circles
and
implies
. Furthermore, angles
and
are opposite angles in cyclic quadrilateral
, which implies the measure of angle
is
. Therefore, the Law of Cosines applied to triangle
yields
Thus
, and so the area of triangle
is
.
Thus, the area of hexagon
is
.
~djmathman
Solution 2
Denote by
the center of
.
Denote by
the radius of
.
We have
,
,
,
,
,
are all on circle
.
Denote
.
Denote
.
Denote
.
Because
and
are on circles
and
,
is a perpendicular bisector of
. Hence,
.
Because
and
are on circles
and
,
is a perpendicular bisector of
. Hence,
.
In
,
Hence,
In
,
Hence,
In
,
Hence,
Taking
, we get
.
Thus,
.
Taking these into (1), we get
.
Hence,
Hence,
.
In
,
In
, by applying the law of sines, we get
Because circles
and
are externally tangent,
is on circle
,
is on circle
,
Thus,
.
Now, we compute
and
.
Recall
and
.
Thus,
.
We also have
Thus,
Therefore,
~Steven Chen (www.professorchenedu.com)
See Also
| 2022 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.