2022 AIME I Problems/Problem 12: Difference between revisions
Oxymoronic15 (talk | contribs) mNo edit summary |
No edit summary |
||
| Line 16: | Line 16: | ||
Let <math>\frac{S_{2022}}{S_{2021}} = \frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find the remainder when <math>p + q</math> is divided by | Let <math>\frac{S_{2022}}{S_{2021}} = \frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find the remainder when <math>p + q</math> is divided by | ||
1000. | 1000. | ||
==Solution== | |||
For each element <math>i</math>, denote <math>x_i = \left( x_{i, A}, x_{i, B} \right) \in \left\{ 0 , 1 \right\}^2</math>, where <math>x_{i, A} = \Bbb I \left\{ i \in A \right\}</math> (resp. <math>x_{i, B} = \Bbb I \left\{ i \in B \right\}</math>). | |||
Denote <math>\Omega = \left\{ (x_1, \cdots , x_n): \sum_{i = 1}^n x_{i, A} = \sum_{i = 1}^n x_{i, B} \right\}</math>. | |||
Denote <math>\Omega_{-j} = \left\{ (x_1, \cdots , x_{j-1} , x_{j+1} , \cdots , x_n): \sum_{i \neq j} x_{i, A} = \sum_{i \neq j} x_{i, B} \right\}</math>. | |||
Hence, | |||
<cmath> | |||
\begin{align*} | |||
S_n & = \sum_{(x_1, \cdots , x_n) \in \Omega} \sum_{i = 1}^n \Bbb I \left\{ x_{i, A} = x_{i, B} = 1 \right\} \\ | |||
& = \sum_{i = 1}^n \sum_{(x_1, \cdots , x_n) \in \Omega} \Bbb I \left\{ x_{i, A} = x_{i, B} = 1 \right\} \\ | |||
& = \sum_{i = 1}^n \sum_{(x_1, \cdots , x_{i-1} , x_{i+1} , \cdots , x_n) \in \Omega_{-i}} 1 | |||
\\ | |||
& = \sum_{i = 1}^n \sum_{j=0}^{n-1} \left( \binom{n-1}{j} \right)^2 \\ | |||
& = n \sum_{j=0}^{n-1} \left( \binom{n-1}{j} \right)^2 \\ | |||
& = n \sum_{j=0}^{n-1} \binom{n-1}{j} \binom{n-1}{n-1-j} \\ | |||
& = n \binom{2n-2}{n-1} . | |||
\end{align*} | |||
</cmath> | |||
Therefore, | |||
<cmath> | |||
\begin{align*} | |||
\frac{S_{2022}}{S_{2021}} | |||
& = \frac{2022 \binom{4042}{2021}}{2021 \binom{4040}{2020}} \\ | |||
& = \frac{4044 \cdot 4041}{2021^2} . | |||
\end{align*} | |||
</cmath> | |||
This is in the lowest term. | |||
Therefore, modulo 1000, | |||
<cmath> | |||
\begin{align*} | |||
p + q | |||
& \equiv 4044 \cdot 4041 + 2021^2 \\ | |||
& \equiv 44 \cdot 41 + 21^2 \\ | |||
& \equiv \boxed{\textbf{(245) }} . | |||
\end{align*} | |||
</cmath> | |||
~Steven Chen (www.professorchenedu.com) | |||
Revision as of 23:01, 17 February 2022
Problem
For any finite set
, let
denote the number of elements in
. Define
where the sum is taken over all ordered pairs
such that
and
are subsets of
with
.
For example,
because the sum is taken over the pairs of subsets
giving
.
Let
, where
and
are relatively prime positive integers. Find the remainder when
is divided by
1000.
Solution
For each element
, denote
, where
(resp.
).
Denote
.
Denote
.
Hence,
Therefore,
This is in the lowest term.
Therefore, modulo 1000,
~Steven Chen (www.professorchenedu.com)