Art of Problem Solving

2021 JMPSC Accuracy Problems/Problem 7: Difference between revisions

Samrocksnature (talk | contribs)
Bradygho (talk | contribs)
Line 3: Line 3:


==Solution==
==Solution==
asdf
Notice that <math>C</math> can only be <math>0</math> and <math>5</math>. However, 790 is not divisible by <math>3</math>, so the number <math>ABC = 265</math>. Thus, <math>3A + 2B + C = \boxed{23}</math>
 
~Bradygho

Revision as of 21:17, 10 July 2021

Problem

If $A$, $B$, and $C$ each represent a single digit and they satisfy the equation \[\begin{array}{cccc}& A & B & C \\ \times & &  &3 \\ \hline  & 7 & 9 & C\end{array},\] find $3A+2B+C$.

Solution

Notice that $C$ can only be $0$ and $5$. However, 790 is not divisible by $3$, so the number $ABC = 265$. Thus, $3A + 2B + C = \boxed{23}$

~Bradygho