2021 AIME II Problems/Problem 15: Difference between revisions
Dearpasserby (talk | contribs) |
Arcticturn (talk | contribs) |
||
| Line 16: | Line 16: | ||
Write <math>7f(n)=4g(n)</math>, which simplifies to <math>3k^2+k-10=3n</math>. Notice that we want the <math>LHS</math> expression to be divisible by 3; as a result, <math>k \equiv 1 \pmod{3}</math>. We also want n to be strictly greater than <math>k^2</math>, so <math>k-10>0, k>10</math>. The LHS expression is always even (why?), so to ensure that k and n share the same parity, k should be even. Then the least k that satisfies these requirements is <math>k=16</math>, giving <math>n=258</math>. | Write <math>7f(n)=4g(n)</math>, which simplifies to <math>3k^2+k-10=3n</math>. Notice that we want the <math>LHS</math> expression to be divisible by 3; as a result, <math>k \equiv 1 \pmod{3}</math>. We also want n to be strictly greater than <math>k^2</math>, so <math>k-10>0, k>10</math>. The LHS expression is always even (why?), so to ensure that k and n share the same parity, k should be even. Then the least k that satisfies these requirements is <math>k=16</math>, giving <math>n=258</math>. | ||
Indeed, <math> | Indeed - if we check our answer, it works. Therefore, the answer is <math>\boxed{258}</math> | ||
-Ross Gao | -Ross Gao | ||
Revision as of 16:10, 22 March 2021
Problem
Let
and
be functions satisfying
and
for positive integers
. Find the least positive integer
such that
.
Solution
Consider what happens when we try to calculate
where n is not a square. If
for (positive) integer k, recursively calculating the value of the function gives us
. Note that this formula also returns the correct value when
, but not when
. Thus
for
.
If
,
returns the same value as
. This is because the recursion once again stops at
. We seek a case in which
, so obviously this is not what we want. We want
to have a different parity, or
have the same parity. When this is the case,
instead returns
.
Write
, which simplifies to
. Notice that we want the
expression to be divisible by 3; as a result,
. We also want n to be strictly greater than
, so
. The LHS expression is always even (why?), so to ensure that k and n share the same parity, k should be even. Then the least k that satisfies these requirements is
, giving
.
Indeed - if we check our answer, it works. Therefore, the answer is
-Ross Gao
See also
| 2021 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Last Question | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.