Art of Problem Solving

2021 AMC 10B Problems/Problem 13: Difference between revisions

Bjc (talk | contribs)
mNo edit summary
Zeusthemoose (talk | contribs)
Line 1: Line 1:
==Probelm==
==Problem==
Let <math>n</math> be a positive integer and <math>d</math> be a digit such that the value of the numeral <math>\underline{32d}</math> in base <math>n</math> equals <math>263</math>, and the value of the numeral <math>\underline{324}</math> in base <math>n</math> equals the value of the numeral <math>\underline{11d1}</math> in base six. What is <math>n + d ?</math>
Let <math>n</math> be a positive integer and <math>d</math> be a digit such that the value of the numeral <math>\underline{32d}</math> in base <math>n</math> equals <math>263</math>, and the value of the numeral <math>\underline{324}</math> in base <math>n</math> equals the value of the numeral <math>\underline{11d1}</math> in base six. What is <math>n + d ?</math>


<math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math>
<math>\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16</math>
==Solution==
==Solution==
B
B

Revision as of 19:49, 11 February 2021

Problem

Let $n$ be a positive integer and $d$ be a digit such that the value of the numeral $\underline{32d}$ in base $n$ equals $263$, and the value of the numeral $\underline{324}$ in base $n$ equals the value of the numeral $\underline{11d1}$ in base six. What is $n + d ?$

$\textbf{(A)} ~10 \qquad\textbf{(B)} ~11 \qquad\textbf{(C)} ~13 \qquad\textbf{(D)} ~15 \qquad\textbf{(E)} ~16$

Solution

B