2021 AMC 10B Problems/Problem 7: Difference between revisions
m →Problem |
|||
| Line 4: | Line 4: | ||
<math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math> | <math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math> | ||
==Solution== | ==Solution== | ||
D | [asy] | ||
pair A=(10,0); | |||
pair B=(-10,0); | |||
draw(A--B); | |||
draw(circle((0,-1),1)); | |||
draw(circle((0,-3),3)); | |||
draw(circle((0,-5),5)); | |||
draw(circle((0,7),7)); | |||
dot((0,7)); | |||
draw((0,7)--(0,0)); | |||
label("<math>7</math>",(0,3.5),E); | |||
label("<math>l</math>",(-9,0),S); | |||
[/asy] | |||
After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area. <math>49 \pi + (25-9) \pi=65 \pi \rightarrow \boxed{D}</math> | |||
Revision as of 18:53, 11 February 2021
Problem
In a plane, four circles with radii
and
are tangent to line
at the same point
but they may be on either side of
. Region
consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region
?
Solution
[asy]
pair A=(10,0);
pair B=(-10,0);
draw(A--B);
draw(circle((0,-1),1));
draw(circle((0,-3),3));
draw(circle((0,-5),5));
draw(circle((0,7),7));
dot((0,7));
draw((0,7)--(0,0));
label("
",(0,3.5),E);
label("
",(-9,0),S);
[/asy]
After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area.