2021 AMC 10B Problems/Problem 7: Difference between revisions
Created page with "no one knows yet" |
mNo edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | |||
one | In a plane, four circles with radii <math>1,3,5,</math> and <math>7</math> are tangent to line <math>l</math> at the same point <math>A,</math> but they may be on either side of <math>l</math>. Region <math>S</math> consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region <math>S</math>? | ||
<math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math> | |||
Revision as of 17:33, 11 February 2021
Problem
In a plane, four circles with radii
and
are tangent to line
at the same point
but they may be on either side of
. Region
consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region
?