2020 IMO Problems/Problem 2: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
Problem 2. The real numbers a, b, c, d are such that | Problem 2. The real numbers <math>a, b, c, d</math> are such that <math>a\ge b \ge c\ge d > 0</math> and <math>a+b+c+d=1</math>. | ||
Prove that | Prove that | ||
<math>(a+2b+3c+4d)a^a b^bc^cd^d<1</math> | <math>(a+2b+3c+4d)a^a b^bc^cd^d<1</math> | ||
== Solution == | |||
Using Weighted AM -GM we get, | |||
<cmath>\frac{a. a +b. b +c. c +d. d}{a+b+c+d} \ge (a^a b^b c^c d^d)^{\frac{1}{a+b+c+d}}</cmath> | |||
<cmath>\implies a^a b^b c^c d^d \le a^2 +b^2 +c^2 +d^2</cmath> | |||
So, <cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | |||
Now notice that , | |||
\[ | |||
a+2b+3c+4d \le | |||
\begin{cases} | |||
a+3b+3c+3d,& \text{as } d\le b\\ | |||
3a+3b+3c+d, &\text{as} d\le a \\ | |||
3a+b+3c+3d ,& \text{as} | |||
b+d\le 2a \\ | |||
3a +3b +c +3d ,& \text{as} | |||
2c+d \le 2a+b | |||
\end{cases} | |||
\] | |||
So, We get , | |||
<cmath>(a+2b+3c+4d)(a^2+b^2+c^2+d^2) </cmath> | |||
<cmath>= a^2(a+2b+3c+4d)+b^2(a+2b+3c+4d)+c^2 (a+2b+3c+4d) +d^2 (a+2b+3c+4d) </cmath> | |||
<cmath>\le a^2(a+3b+3c+3d)+b^2(3a+b+3c+3d)+c^2 (3a+3b+c+3d) +d^2 (3a+3b+3c+d)</cmath> | |||
<cmath>=(a+b+c+d)^3 =1</cmath> | |||
Now , For equality we must have <math>a=b=c=d=\frac{1}{4}</math> | |||
On that case we get ,<cmath>(a+2b+3c+4d) a^ab^bc^c \le (a+2b+3c+4d)(a^2+b^2+c^2+d^2) =\frac{5}{8} <1</cmath> | |||
Revision as of 23:20, 26 September 2020
Problem 2. The real numbers
are such that
and
.
Prove that
Solution
Using Weighted AM -GM we get,
So,
Now notice that ,
\[
a+2b+3c+4d \le
\begin{cases}
a+3b+3c+3d,& \text{as } d\le b\\
3a+3b+3c+d, &\text{as} d\le a \\
3a+b+3c+3d ,& \text{as}
b+d\le 2a \\
3a +3b +c +3d ,& \text{as}
2c+d \le 2a+b
\end{cases}
\]
So, We get ,
Now , For equality we must have
On that case we get ,