Art of Problem Solving

1990 AIME Problems/Problem 10: Difference between revisions

Kcbhatraju (talk | contribs)
Angelalz (talk | contribs)
Line 15: Line 15:


=== Solution 3 ===
=== Solution 3 ===
The values in polar form will be (1, 20x) and (1, 7.5x). Multiplying these gives (1, 27.5x). Then, we get 27.5, 55, 82.5, 110, ...
The values in polar form will be <math>(1, 20x)</math> and <math>(1, 7.5x)</math>. Multiplying these gives <math>(1, 27.5x)</math>. Then, we get <math>27.5</math>, <math>55</math>, <math>82.5</math>, <math>110</math>, <math>\cdots</math> up to <math>3960 (lcm(55,360)) \implies \frac{3960 \cdot 2}{55}=144</math>.
up to 3960 (lcm(55,360)) => 3960*2/55=144.


== See also ==
== See also ==

Revision as of 12:03, 3 August 2020

Problem

The sets $A = \{z : z^{18} = 1\}$ and $B = \{w : w^{48} = 1\}$ are both sets of complex roots of unity. The set $C = \{zw : z \in A ~ \mbox{and} ~ w \in B\}$ is also a set of complex roots of unity. How many distinct elements are in $C_{}^{}$?

Solution

Solution 1

The least common multiple of $18$ and $48$ is $144$, so define $n = e^{2\pi i/144}$. We can write the numbers of set $A$ as $\{n^8, n^{16}, \ldots n^{144}\}$ and of set $B$ as $\{n^3, n^6, \ldots n^{144}\}$. $n^x$ can yield at most $144$ different values. All solutions for $zw$ will be in the form of $n^{8k_1 + 3k_2}$.

$8$ and $3$ are relatively prime, and by the Chicken McNugget Theorem, for two relatively prime integers $a,b$, the largest number that cannot be expressed as the sum of multiples of $a,b$ is $a \cdot b - a - b$. For $3,8$, this is $13$; however, we can easily see that the numbers $145$ to $157$ can be written in terms of $3,8$. Since the exponents are of roots of unities, they reduce $\mod{144}$, so all numbers in the range are covered. Thus the answer is $\boxed{144}$.

Solution 2

The 18 and 48th roots of $1$ can be found by De Moivre's Theorem. They are $\text{cis}\,\left(\frac{2\pi k_1}{18}\right)$ and $\text{cis}\,\left(\frac{2\pi k_2}{48}\right)$ respectively, where $\text{cis}\,\theta = \cos \theta + i \sin \theta$ and $k_1$ and $k_2$ are integers from $0$ to $17$ and $0$ to $47$, respectively.

$zw = \text{cis}\,\left(\frac{\pi k_1}{9} + \frac{\pi k_2}{24}\right) = \text{cis}\,\left(\frac{8\pi k_1 + 3 \pi k_2}{72}\right)$. Since the trigonometric functions are periodic every $2\pi$, there are at most $72 \cdot 2 = \boxed{144}$ distinct elements in $C$. As above, all of these will work.

Solution 3

The values in polar form will be $(1, 20x)$ and $(1, 7.5x)$. Multiplying these gives $(1, 27.5x)$. Then, we get $27.5$, $55$, $82.5$, $110$, $\cdots$ up to $3960 (lcm(55,360)) \implies \frac{3960 \cdot 2}{55}=144$.

See also

1990 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.