Art of Problem Solving

2020 AIME I Problems/Problem 1: Difference between revisions

Brendanb4321 (talk | contribs)
removed 1998 aime problem 6
Tag: Replaced
Line 1: Line 1:
Note: Please do not post problems here until after the AIME.
== Problem ==
== Problem ==
Let <math>ABCD</math> be a [[parallelogram]].  Extend <math>\overline{DA}</math> through <math>A</math> to a point <math>P,</math> and let <math>\overline{PC}</math> meet <math>\overline{AB}</math> at <math>Q</math> and <math>\overline{DB}</math> at <math>R.</math>  Given that <math>PQ = 735</math> and <math>QR = 112,</math> find <math>RC.</math>


== Solution ==
== Solution ==
=== Solution 1 ===
[[Image:AIME_1998-6.png|350px]]
There are several [[similar triangles]]. <math>\triangle PAQ\sim \triangle PDC</math>, so we can write the [[proportion]]:
<div style="text-align:center;">
<math>\frac{AQ}{CD} = \frac{PQ}{PC} = \frac{735}{112 + 735 + RC} = \frac{735}{847 + RC}</math>
</div>
Also, <math>\triangle BRQ\sim DRC</math>, so:
<div style="text-align:center;">
<math>\frac{QR}{RC} = \frac{QB}{CD} = \frac{112}{RC} = \frac{CD - AQ}{CD} = 1 - \frac{AQ}{CD}</math><br />
<math>\frac{AQ}{CD} = 1 - \frac{112}{RC} = \frac{RC - 112}{RC}</math>
</div>
Substituting,
<div style="text-align:center;">
<math>\frac{AQ}{CD} = \frac{735}{847 + RC} = \frac{RC - 112}{RC}</math><br />
<math>735RC = (RC + 17797)(RC - 13)</math><br />
<math>0 = RC^2 - 13\cdot17797</math>
</div>
Thus, <math> RC = \sqrt{13*17797} = 481</math>.
=== Solution 2 ===
We have <math>\triangle BRQ\sim \triangle DRC</math> so <math>\frac{112}{RC} = \frac{BR}{DR}</math>. We also have <math>\triangle BRC \sim \triangle DRP</math> so <math>\frac{ RC}{847} = \frac {BR}{DR}</math>. Equating the two results gives <math>\frac{13}{RC} =  \frac{ RC}{17797}</math> and so <math>RC^2=13*17797</math> which solves to <math>RC=\boxed{481}</math>

Revision as of 16:40, 27 February 2020

Note: Please do not post problems here until after the AIME.

Problem

Solution