Art of Problem Solving

2020 AMC 10B Problems/Problem 13: Difference between revisions

Tman1 (talk | contribs)
Anmol04 (talk | contribs)
m minor edit
Line 1: Line 1:
==Problem==
== Problem ==
Andy the Ant lives on a coordinate plane and is currently at <math>(-20, 20)</math> facing east (that is, in the positive <math>x</math>-direction). Andy moves <math>1</math> unit and then turns <math>90^{\circ}</math> degrees left. From there, Andy moves <math>2</math> units (north) and then turns <math>90^{\circ}</math> degrees left. He then moves <math>3</math> units (west) and again turns <math>90^{\circ}</math> degrees left. Andy continues his progress, increasing his distance each time by <math>1</math> unit and always turning left. What is the location of the point at which Andy makes the <math>2020</math>th left turn?
Andy the Ant lives on a coordinate plane and is currently at <math>(-20, 20)</math> facing east (that is, in the positive <math>x</math>-direction). Andy moves <math>1</math> unit and then turns <math>90^{\circ}</math> degrees left. From there, Andy moves <math>2</math> units (north) and then turns <math>90^{\circ}</math> degrees left. He then moves <math>3</math> units (west) and again turns <math>90^{\circ}</math> degrees left. Andy continues his progress, increasing his distance each time by <math>1</math> unit and always turning left. What is the location of the point at which Andy makes the <math>2020</math>th left turn?
<math>\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)</math>
<math>\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)</math>


==Solution 1==
== Solutions ==
=== Solution 1 ===
You can find that every four moves both coordinates decrease by 2. Therefore, both coordinates need to decrease by two 505 times. You subtract, giving you the answer of <math>\boxed{\textbf{(B) } \text{(-1030,-990)}}</math> ~happykeeper
You can find that every four moves both coordinates decrease by 2. Therefore, both coordinates need to decrease by two 505 times. You subtract, giving you the answer of <math>\boxed{\textbf{(B) } \text{(-1030,-990)}}</math> ~happykeeper


==See Also==
=== Video Solution ===
2015 AMC 10B Problem 24
https://artofproblemsolving.com/wiki/index.php/2015_AMC_10B_Problems/Problem_24
 
==Video Solution==
https://youtu.be/t6yjfKXpwDs
https://youtu.be/t6yjfKXpwDs


~IceMatrix
~IceMatrix


==See Also==
== Similar Problem ==
2015 AMC 10B Problem 24
https://artofproblemsolving.com/wiki/index.php/2015_AMC_10B_Problems/Problem_24


== See Also ==
{{AMC10 box|year=2020|ab=B|num-b=12|num-a=14}}
{{AMC10 box|year=2020|ab=B|num-b=12|num-a=14}}
{{MAA Notice}}
{{MAA Notice}}

Revision as of 00:37, 19 October 2020

Problem

Andy the Ant lives on a coordinate plane and is currently at $(-20, 20)$ facing east (that is, in the positive $x$-direction). Andy moves $1$ unit and then turns $90^{\circ}$ degrees left. From there, Andy moves $2$ units (north) and then turns $90^{\circ}$ degrees left. He then moves $3$ units (west) and again turns $90^{\circ}$ degrees left. Andy continues his progress, increasing his distance each time by $1$ unit and always turning left. What is the location of the point at which Andy makes the $2020$th left turn?

$\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)$

Solutions

Solution 1

You can find that every four moves both coordinates decrease by 2. Therefore, both coordinates need to decrease by two 505 times. You subtract, giving you the answer of $\boxed{\textbf{(B) } \text{(-1030,-990)}}$ ~happykeeper

Video Solution

https://youtu.be/t6yjfKXpwDs

~IceMatrix

Similar Problem

2015 AMC 10B Problem 24 https://artofproblemsolving.com/wiki/index.php/2015_AMC_10B_Problems/Problem_24

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.