Art of Problem Solving

1994 AIME Problems/Problem 13: Difference between revisions

mNo edit summary
mNo edit summary
Line 1: Line 1:
{{empty}}
== Problem ==
== Problem ==
The equation
<center><math>x^{10}+(13x-1)^{10}=0\,</math></center>
has 10 complex roots <math>r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},\,</math> where the bar denotes complex conjugation.  Find the value of
<center><math>\frac 1{r_1\overline{r_1}}+\frac 1{r_2\overline{r_2}}+\frac 1{r_3\overline{r_3}}+\frac 1{r_4\overline{r_4}}+\frac 1{r_5\overline{r_5}}.</math></center>


== Solution ==
== Solution ==
{{solution}}
{{solution}}
== See also ==
== See also ==
* [[1994 AIME Problems/Problem 12 | Previous problem]]
{{AIME box|year=1994|num-b=12|num-a=14}}
* [[1994 AIME Problems/Problem 14 | Next problem]]
* [[1994 AIME Problems]]

Revision as of 22:42, 28 March 2007

Problem

The equation

$x^{10}+(13x-1)^{10}=0\,$

has 10 complex roots $r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},\,$ where the bar denotes complex conjugation. Find the value of

$\frac 1{r_1\overline{r_1}}+\frac 1{r_2\overline{r_2}}+\frac 1{r_3\overline{r_3}}+\frac 1{r_4\overline{r_4}}+\frac 1{r_5\overline{r_5}}.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1994 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions