Art of Problem Solving

2020 AMC 10A Problems/Problem 15: Difference between revisions

Mathcounts7373 (talk | contribs)
No edit summary
Advancedjus (talk | contribs)
No edit summary
Line 1: Line 1:
What is the probability that a factor of 12! is a perfect square.
==Problem 15==
 
A positive integer divisor of <math>12!</math> is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. What is <math>m+n</math>?
 
<math>\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23</math>
 
== Solution ==


==See Also==
==See Also==

Revision as of 21:26, 31 January 2020

Problem 15

A positive integer divisor of $12!$ is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23$

Solution

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.