1984 AIME Problems/Problem 15: Difference between revisions
I_like_pie (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Determine <math>\displaystyle w^2+x^2+y^2+z^2</math> if | |||
<center><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math></center> | |||
<center><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math></center> | |||
<center><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math></center> | |||
<center><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></center> | |||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} | ||
Revision as of 00:53, 21 January 2007
Problem
Determine
if
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.