Art of Problem Solving

2006 AMC 12A Problems/Problem 15: Difference between revisions

Xantos C. Guin (talk | contribs)
added category
m Problem: spacing
Line 3: Line 3:
Suppose <math>\cos x=0</math> and <math>\cos (x+z)=1/2</math>. What is the smallest possible positive value of <math>z</math>?
Suppose <math>\cos x=0</math> and <math>\cos (x+z)=1/2</math>. What is the smallest possible positive value of <math>z</math>?


<math> \mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6}</math>
<math> \mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6} \quad \mathrm{(E) \ } \frac{7\pi}{6}</math>
 
<math>\mathrm{(E) \ } \frac{7\pi}{6}</math>


== Solution ==
== Solution ==

Revision as of 18:50, 31 January 2007

Problem

Suppose $\cos x=0$ and $\cos (x+z)=1/2$. What is the smallest possible positive value of $z$?

$\mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6} \quad \mathrm{(E) \ } \frac{7\pi}{6}$

Solution

See also