Newton's Sums: Difference between revisions
m →Proof |
|||
| Line 49: | Line 49: | ||
<math>\begin{cases}a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_0=0\\a_n\beta^n+a_{n-1}\beta^{n-1}+...+a_0=0\\~~~~~~~~~~~~~~~~~~\vdots\\a_n\omega^ | <math>\begin{cases}a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_0=0\\a_n\beta^n+a_{n-1}\beta^{n-1}+...+a_0=0\\~~~~~~~~~~~~~~~~~~\vdots\\a_n\omega^n+a_{n-1}\omega^{n-1}+...+a_0=0\end{cases}</math> | ||
Revision as of 22:09, 8 January 2020
Newton sums give us a clever and efficient way of finding the sums of roots of a polynomial raised to a power. They can also be used to derive several factoring identities.
Statement
Consider a polynomial
of degree
,
Let
have roots
. Define the following sums:
Newton sums tell us that,
(Define
for
.)
We also can write:
etc., where
denotes the
-th elementary symmetric sum.
Proof
Let
be the roots of a given polynomial
. Then, we have that
Thus,
Multiplying each equation by
, respectively,
Sum,
Therefore,
Example
For a more concrete example, consider the polynomial
. Let the roots of
be
and
. Find
and
.
Newton Sums tell us that:
Solving, first for
, and then for the other variables, yields,
Which gives us our desired solutions,
and
.
Practice
2019 AMC 12A #17