2005 AMC 10A Problems/Problem 25: Difference between revisions
Sevenoptimus (talk | contribs) m Improved formatting of problem statement |
|||
| (76 intermediate revisions by 20 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
In <math>ABC</math> we have <math> AB = 25 </math>, <math> BC = 39 </math>, and <math>AC=42</math>. Points <math>D</math> and <math>E</math> are on <math>AB</math> and <math>AC</math> respectively, with <math> AD = 19 </math> and <math> AE = 14 </math>. What is the | In <math>\triangle ABC</math> we have <math>AB = 25</math>, <math>BC = 39</math>, and <math>AC = 42</math>. Points <math>D</math> and <math>E</math> are on <math>\overline{AB}</math> and <math>\overline{AC}</math> respectively, with <math>AD = 19</math> and <math>AE = 14</math>. What is the ratio of the area of triangle <math>ADE</math> to the area of the quadrilateral <math>BCED</math>? | ||
<math> \ | <math> | ||
\textbf{(A) } \frac{266}{1521}\qquad \textbf{(B) } \frac{19}{75}\qquad \textbf{(C) } \frac{1}{3}\qquad \textbf{(D) } \frac{19}{56}\qquad \textbf{(E) } 1 | |||
</math> | |||
==Solution== | ==Solution 1== | ||
The [[area]] of a [[triangle]] is <math>\frac{1}{2}bc\sin A</math>. | We have | ||
<cmath>\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC} = \frac{19}{25} \cdot \frac{14}{42} = \frac{19}{75}.</cmath> | |||
(Area of a triangle is base times height, so the area ratio of triangles, that have a common vertex (height) and bases on a common line, is the base length ratio. This is applied twice, using different pairs of bases, and corresponding altitudes for height.). | |||
<asy> | |||
unitsize(0.15 cm); | |||
pair A, B, C, D, E; | |||
A = (191/39,28*sqrt(1166)/39); | |||
B = (0,0); | |||
C = (39,0); | |||
D = (6*A + 19*B)/25; | |||
E = (28*A + 14*C)/42; | |||
draw(A--B--C--cycle); | |||
draw(D--E); | |||
label("$A$", A, N); | |||
label("$B$", B, SW); | |||
label("$C$", C, SE); | |||
label("$D$", D, W); | |||
label("$E$", E, NE); | |||
label("$19$", (A + D)/2, W); | |||
label("$6$", (B + D)/2, W); | |||
label("$14$", (A + E)/2, NE); | |||
label("$28$", (C + E)/2, NE); | |||
</asy> | |||
<math>[BCED] = [ABC] - [ADE]</math>, so | |||
<cmath> | |||
\begin{align*} | |||
\frac{[ADE]}{[BCED]} &= \frac{[ADE]}{[ABC] - [ADE]} \\ | |||
&= \frac{1}{\frac{ABC}{ADE} - 1} \\ | |||
&= \frac{1}{\frac{75}{19} - 1} \\ | |||
&= \boxed{\textbf{(D) }\frac{19}{56}}. | |||
\end{align*} | |||
</cmath> | |||
Note: If it is hard to understand why <cmath>\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC}</cmath>, you can use the fact that the area of a triangle equals <math>\frac{1}{2} \cdot ab \cdot \sin(C)</math>. If angle <math>DAE = Z</math>, we have that <cmath>\frac{[ADE]}{[ABC]} = \frac{\frac{1}{2} \cdot 19 \cdot 14 \cdot \sin(Z)}{\frac{1}{2} \cdot 25 \cdot 42 \cdot \sin(Z)} = \frac{19 \cdot 14}{25 \cdot 42} = \frac{ab}{cd}</cmath>. | |||
==Video Solution== | |||
https://youtu.be/VXyOJWcpi00 | |||
==Solution 2 == | |||
<asy> | |||
unitsize(0.15 cm); | |||
pair A, B, C, D, E; | |||
A = (191/39,28*sqrt(1166)/39); | |||
B = (0,0); | |||
C = (39,0); | |||
D = (6*A + 19*B)/25; | |||
E = (28*A + 14*C)/42; | |||
draw(A--B--C--cycle); | |||
draw(D--E); | |||
label("$A$", A, N); | |||
label("$B$", B, SW); | |||
label("$C$", C, SE); | |||
label("$D$", D, W); | |||
label("$E$", E, NE); | |||
label("$19$", (A + D)/2, W); | |||
label("$6$", (B + D)/2, W); | |||
label("$14$", (A + E)/2, NE); | |||
label("$28$", (C + E)/2, NE); | |||
</asy> | |||
We can let <math>[ADE]=x</math>. | |||
Since <math>EC=2 \cdot EA</math>, <math>[DEC]=2x</math>. | |||
So, <math>[ADC]=3x</math>. | |||
This means that <math>[BDC]=\frac{6}{19}\cdot3x=\frac{18x}{19}</math>. | |||
Thus, <math>\frac{[ADE]}{[BCED]} = \frac{x}{\frac{18x}{19}+2x}= \boxed{\textbf{(D) }\frac{19}{56}}.</math> | |||
-Conantwiz2023 | |||
==Solution 3 (trig)== | |||
The [[area]] of a [[triangle]] is <math>\frac{1}{2} bc\sin A</math>. | |||
Using this formula: | Using this formula: | ||
| Line 17: | Line 104: | ||
<math>[BCED] = 525\sin A - 133\sin A = 392\sin A</math>. | <math>[BCED] = 525\sin A - 133\sin A = 392\sin A</math>. | ||
Therefore, the desired ratio is <math>\frac{133\sin A}{392\sin A}=\frac{19}{56} | Therefore, the desired ratio is <math>\frac{133\sin A}{392\sin A}=\boxed{\textbf{(D) }\frac{19}{56}}</math> | ||
Note: <math>BC=39</math> was not used in this solution. | |||
== Solution 4 == | |||
Let <math>F</math> be on <math>AC</math> such that <math>DE\parallel BF</math> then we have | |||
<cmath>\frac{[ADE]}{[ABF]}=\left(\frac{AD}{AB}\right)^2=\left(\frac{19}{25}\right)^2=\frac{361}{625}</cmath> | |||
<cmath>\frac{[ADE]}{[DEFB]}=\frac{361}{625-361}=\frac{361}{364}</cmath> | |||
Since <math>\bigtriangleup ADE\sim\bigtriangleup ABF</math> we have | |||
<cmath>\frac{AD}{AE}=\frac{DB}{EF}\Longrightarrow EF=\frac{84}{19}</cmath> | |||
Thus <math>FC=EC-EF=\frac{448}{19}</math> and | |||
<cmath>\frac{[ABF]}{[BFC]}=\frac{AF}{FC}=\frac{350}{448}</cmath> | |||
<cmath>\frac{[ADE]}{[BFC]}=\left(\frac{[ADE]}{[ABF]}\right)\left(\frac{[ABF]}{[BFC]}\right)=\left(\frac{361}{625}\right)\left(\frac{350}{448}\right)=\frac{126350}{280000}</cmath> | |||
Finally, after some calculations, | |||
<cmath>\frac{[ADE]}{[DECB]}=\frac{[ADE]}{[BFC]+[DECB]}=\boxed{\textbf{(D) \ } \frac{19}{56}}</cmath>. | |||
~ Nafer | |||
~ LaTeX changes by tkfun | |||
== Solution 5 == | |||
Let the area of triangle ABC be denoted by [ABC] and the area of quadrilateral ABCD be denoted by [ABCD]. | |||
<cmath>\text{Diagram:}</cmath> | |||
<asy> | |||
unitsize(0.15 cm); | |||
pair A, B, C, D, E; | |||
A = (191/39,28*sqrt(1166)/39); | |||
B = (0,0); | |||
C = (39,0); | |||
D = (6*A + 19*B)/25; | |||
E = (28*A + 14*C)/42; | |||
draw(A--B--C--cycle); | |||
draw(D--E); | |||
label("$A$", A, N); | |||
label("$B$", B, SW); | |||
label("$C$", C, SE); | |||
label("$D$", D, W); | |||
label("$E$", E, NE); | |||
label("$19$", (A + D)/2, W); | |||
label("$6$", (B + D)/2, W); | |||
label("$14$", (A + E)/2, NE); | |||
label("$28$", (C + E)/2, NE); | |||
</asy> | |||
Let the area of <math>\triangle ABC</math> be <math>x</math>. <math>\triangle ABE</math> and <math>\triangle BEC</math> share a height, and the ratio of their bases are <math>1:2</math>, so the area of <math>\triangle ABE</math> is <math>\frac{x}{3}</math>. | |||
Similarly, <math>\triangle AED</math> and <math>\triangle DEB</math> share a height, and the ratio of their bases is <math>19:6</math>, so the ratio of <math>\frac{[AED]}{[AEB]}=\frac{19}{25}</math>. Therefore, | |||
<cmath>[AED]=\frac{19}{25}\cdot\left[AEB\right]=\frac{19}{25}\cdot\frac{1}{3}\cdot\left[ABC\right]=\frac{19}{25}\cdot\frac{1}{3}\cdot x=\frac{19}{75}x</cmath> | |||
<cmath>[DECB]=[ABC]-[AED]=x-\frac{19}{75}x=\frac{56}{75}x</cmath> | |||
The ratio <math>\frac{[AED]}{[DECB]}=\frac{\frac{19}{75}}{\frac{56}{75}}=\frac{19}{56}</math> which is answer choice <math>\boxed{\textbf{(D) } \frac{19}{56}}</math>. | |||
~JH. L | |||
==See also== | ==See also== | ||
{{AMC10 box|year=2005|num-b=24|after=Last Problem}} | {{AMC10 box|year=2005|ab=A|num-b=24|after=Last Problem}} | ||
[[Category:Triangle Area Ratio Problems]] | |||
[[Category: | |||
{{MAA Notice}} | {{MAA Notice}} | ||
https://ivyleaguecenter.files.wordpress.com/2017/11/amc-10-picture.jpg | |||
Latest revision as of 01:25, 2 July 2025
Problem
In
we have
,
, and
. Points
and
are on
and
respectively, with
and
. What is the ratio of the area of triangle
to the area of the quadrilateral
?
Solution 1
We have
(Area of a triangle is base times height, so the area ratio of triangles, that have a common vertex (height) and bases on a common line, is the base length ratio. This is applied twice, using different pairs of bases, and corresponding altitudes for height.).
, so
Note: If it is hard to understand why
, you can use the fact that the area of a triangle equals
. If angle
, we have that
.
Video Solution
Solution 2
We can let
.
Since
,
.
So,
.
This means that
.
Thus,
-Conantwiz2023
Solution 3 (trig)
Using this formula:
Since the area of
is equal to the area of
minus the area of
,
.
Therefore, the desired ratio is
Note:
was not used in this solution.
Solution 4
Let
be on
such that
then we have
Since
we have
Thus
and
Finally, after some calculations,
.
~ Nafer
~ LaTeX changes by tkfun
Solution 5
Let the area of triangle ABC be denoted by [ABC] and the area of quadrilateral ABCD be denoted by [ABCD].
Let the area of
be
.
and
share a height, and the ratio of their bases are
, so the area of
is
.
Similarly,
and
share a height, and the ratio of their bases is
, so the ratio of
. Therefore,
The ratio
which is answer choice
.
~JH. L
See also
| 2005 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 24 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.
https://ivyleaguecenter.files.wordpress.com/2017/11/amc-10-picture.jpg