Art of Problem Solving

2012 AMC 10B Problems/Problem 8: Difference between revisions

Kaysi (talk | contribs)
Mathloveryeah (talk | contribs)
 
(4 intermediate revisions by 3 users not shown)
Line 5: Line 5:
<math> \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 25 </math>
<math> \textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 25 </math>


== Solutions ==
== Solution ==


<math>(x-2)^2</math> = perfect square.
<math>(x-2)^2</math> = perfect square.


1< perfect square< 25
1 < perfect square < 25


Perfect square can equal: 4, 9, or 16
Perfect square can equal: 4, 9, or 16


Solve for x:
Solve for <math>x</math>:


<math>(x-2)^2=4</math>  
<math>(x-2)^2=4</math>  
Line 31: Line 31:
<math>x=6,-2</math>
<math>x=6,-2</math>


''What is the sum of all integer solutions''
The sum of all integer solutions is


<math>4+5+6+0+(-1)+(-2)=\boxed{12}</math>
<math>4+5+6+0+(-1)+(-2)=\boxed{\textbf{(B)} 12}</math>
 
OR
 
<math> \textbf{(B)}</math>


==See Also==
==See Also==
Line 43: Line 39:
{{AMC10 box|year=2012|ab=B|num-b=7|num-a=9}}
{{AMC10 box|year=2012|ab=B|num-b=7|num-a=9}}
{{MAA Notice}}
{{MAA Notice}}
[[Category: Introductory Algebra Problems]]

Latest revision as of 17:54, 19 October 2025

Problem 8

What is the sum of all integer solutions to $1<(x-2)^2<25$?

$\textbf{(A)}\ 10\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 25$

Solution

$(x-2)^2$ = perfect square.

1 < perfect square < 25

Perfect square can equal: 4, 9, or 16

Solve for $x$:

$(x-2)^2=4$

$x=4,0$

and

$(x-2)^2=9$

$x=5,-1$

and

$(x-2)^2=16$

$x=6,-2$

The sum of all integer solutions is

$4+5+6+0+(-1)+(-2)=\boxed{\textbf{(B)} 12}$

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.