1982 USAMO Problems/Problem 3: Difference between revisions
No edit summary |
|||
| Line 16: | Line 16: | ||
Proof. <cmath>\tan x \tan (A - x) = \tan x \cdot \frac{\tan A - \tan x}{1 + \tan A \tan x} = 1 - \frac{1}{\cos^2 x (1 + \tan A \tan x)}</cmath> | Proof. <cmath>\tan x \tan (A - x) = \tan x \cdot \frac{\tan A - \tan x}{1 + \tan A \tan x} = 1 - \frac{1}{\cos^2 x (1 + \tan A \tan x)}</cmath> | ||
<cmath>= 1 - \frac{2}{1 + \cos 2x + \tan A \sin 2x} = 1 - \frac{2}{1 + \sec A \cos (A - 2x)</cmath> is increasing on the desired interval, because <math>\cos (A - 2x)</math> is increasing on <math>0 < x < \frac{A}{2}.</math> | <cmath>= 1 - \frac{2}{1 + \cos 2x + \tan A \sin 2x} = 1 - \frac{2}{1 + \sec A \cos (A - 2x)}</cmath> is increasing on the desired interval, because <math>\cos (A - 2x)</math> is increasing on <math>0 < x < \frac{A}{2}.</math> | ||
Let <math>x_1, y_1, z_1</math> and <math>x_2, y_2, z_2</math> be half of the angles of triangles <math>A_1 BC</math> and <math>A_2 BC</math> in that order, respectively. Then it is immediate that <math>30^\circ > y_1 > y_2</math>, <math>30^\circ > z_1 > z_2</math>, and <math>x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 90^\circ</math>. Hence, by Lemma it follows that | Let <math>x_1, y_1, z_1</math> and <math>x_2, y_2, z_2</math> be half of the angles of triangles <math>A_1 BC</math> and <math>A_2 BC</math> in that order, respectively. Then it is immediate that <math>30^\circ > y_1 > y_2</math>, <math>30^\circ > z_1 > z_2</math>, and <math>x_1 + y_1 + z_1 = x_2 + y_2 + z_2 = 90^\circ</math>. Hence, by Lemma it follows that | ||
Latest revision as of 22:29, 18 May 2015
Problem
If a point
is in the interior of an equilateral triangle
and point
is in the interior of
, prove that
,
where the isoperimetric quotient of a figure
is defined by
Solution
First, an arbitrary triangle
has isoperimetric quotient (using the notation
for area and
):
Lemma.
is increasing on
, where
.
Proof.
is increasing on the desired interval, because
is increasing on
Let
and
be half of the angles of triangles
and
in that order, respectively. Then it is immediate that
,
, and
. Hence, by Lemma it follows that
Multiplying this inequality by
gives that
, as desired.
See Also
| 1982 USAMO (Problems • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.