2007 IMO Problems/Problem 2: Difference between revisions
mNo edit summary |
No edit summary |
||
| Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
<center><asy> | |||
import cse5; | |||
import graph; | |||
import olympiad; | |||
dotfactor = 3; | |||
unitsize(1.5inch); | |||
path circle = Circle(origin, 1); | |||
draw(circle); | |||
pair D = (-sqrt(3)/2, -0.5), C = (sqrt(3)/2, -0.5); | |||
//G = bisectorpoint(C, B, D); | |||
pair Ee = rotate(38,C)*D; | |||
pair E = IP(C--Ee, circle,1); | |||
pair Gg = rotate(76,C)*D; | |||
path circle2 = Circle(E, length(C-E)); | |||
pair G = IP(C--Gg, circle2, 1); | |||
pair F = IP(C--D, circle2, 1); | |||
pair Bb = rotate(-104,C)*D; | |||
pair B = IP(C--Bb, circle, 1); | |||
pair A = extension((-1,B.y),(1,B.y),G,F); | |||
draw(circle2, dashed); | |||
draw(A--G); draw(C--D--A--B); draw(G--B); draw(E--F); draw(E--C); draw(E--G); | |||
dot("$C$", C, dir(30)); dot("$D$", D, SW); dot("$G$", G, SE); | |||
dot("$E$", E, SW); dot("$F$", F, SW); dot("$A$", A, SW); dot("$B$", B, SE); | |||
draw(D--E,dashed); draw(B--E,dashed); | |||
</asy></center> | |||
Since <math>\angle{DAF}=\angle{CGF}</math>, <math>\angle{BAF}=\angle{CFG}</math>, it suffices to prove <math>CF=CG</math>. | |||
Let <math>\angle{FCE}=\alpha</math>, <math>\angle{GCE}=\beta</math>, <math>\angle{CDE}=\gamma</math>. We have: | |||
<cmath>CF=2CE\cos{\alpha}, CG=2CE\cos{\beta}</cmath> | |||
so, | |||
<cmath>\dfrac{CF}{CG}=\dfrac{\cos{\alpha}}{\cos{\beta}}</cmath> | |||
Meantime, using Law of Sines on <math>\triangle{DEC}</math>, we have, | |||
<cmath>\dfrac{CE}{\sin{\gamma}}=\dfrac{DC}{\sin{(180-\alpha-\gamma)}}=\dfrac{DC}{\sin{(\alpha+\gamma)}}</cmath> | |||
Using Law of Sines on <math>\triangle{BEG}</math>, and notice that <math>\angle{CBE}=\angle{CDE}=\gamma</math>, we have, | |||
<cmath>\dfrac{CE}{\sin{\gamma}}=\dfrac{BG}{\sin{(180-\beta-\gamma)}}=\dfrac{BG}{\sin{(\beta+\gamma)}}</cmath> | |||
so, | |||
<cmath>\dfrac{DC}{BG}=\dfrac{\sin{(\alpha+\gamma)}}{\sin{(\beta+\gamma)}}</cmath> | |||
Since <math>\triangle{GFC} \sim \triangle{GAB}</math>, and <math>DC=AB</math>, we have, <math>\dfrac{DC}{BG}=\dfrac{AB}{BG}=\dfrac{CF}{CG}</math>. Hence, | |||
<cmath>\dfrac{\sin{(\alpha+\gamma)}}{\sin{(\beta+\gamma)}}=\dfrac{\cos{\alpha}}{\cos{\beta}}</cmath> | |||
or, | |||
<cmath>\sin{(\alpha+\gamma)}\cos{\beta}=\sin{(\beta+\gamma)}\cos{\alpha}</cmath> | |||
<cmath>\dfrac{1}{2}(\sin{(\alpha+\gamma+\beta)}-\sin{(\alpha+\gamma-\beta)})=\dfrac{1}{2}(\sin{(\alpha+\gamma+\beta)}-\sin{(\beta+\gamma-\alpha)})</cmath> | |||
<cmath>\sin{(\alpha+\gamma-\beta)}=\sin{(\beta+\gamma-\alpha)}</cmath> | |||
There are two possibilities: (1) <math>\alpha+\gamma-\beta = \beta+\gamma-\alpha</math>, or (2) <math>\alpha+\gamma-\beta = 180 - (\beta+\gamma-\alpha)</math>. However, (2) would mean <math>\gamma=90</math>, then <math>EC</math> would be a diameter, and <math>EF < EC</math> because <math>F</math> is inside the circle, so (2) is not valid. From condition (1), we have <math>\alpha=\beta</math>, therefore <math>CF=CG</math>. <math>\square</math> | |||
Solution by Mathdummy | |||
{{alternate solutions}} | {{alternate solutions}} | ||
Latest revision as of 00:45, 24 August 2018
Problem
Consider five points
, and
such that
is a parallelogram and
is a cyclic quadrilateral.
Let
be a line passing through
. Suppose that
intersects the interior of the segment
at
and intersects
line
at
. Suppose also that
. Prove that
is the bisector of
.
Solution
![[asy] import cse5; import graph; import olympiad; dotfactor = 3; unitsize(1.5inch); path circle = Circle(origin, 1); draw(circle); pair D = (-sqrt(3)/2, -0.5), C = (sqrt(3)/2, -0.5); //G = bisectorpoint(C, B, D); pair Ee = rotate(38,C)*D; pair E = IP(C--Ee, circle,1); pair Gg = rotate(76,C)*D; path circle2 = Circle(E, length(C-E)); pair G = IP(C--Gg, circle2, 1); pair F = IP(C--D, circle2, 1); pair Bb = rotate(-104,C)*D; pair B = IP(C--Bb, circle, 1); pair A = extension((-1,B.y),(1,B.y),G,F); draw(circle2, dashed); draw(A--G); draw(C--D--A--B); draw(G--B); draw(E--F); draw(E--C); draw(E--G); dot("$C$", C, dir(30)); dot("$D$", D, SW); dot("$G$", G, SE); dot("$E$", E, SW); dot("$F$", F, SW); dot("$A$", A, SW); dot("$B$", B, SE); draw(D--E,dashed); draw(B--E,dashed); [/asy]](http://latex.artofproblemsolving.com/c/4/d/c4d6cd122415e7b7ccce4bdc0b15896ba36b846d.png)
Since
,
, it suffices to prove
.
Let
,
,
. We have:
so,
Meantime, using Law of Sines on
, we have,
Using Law of Sines on
, and notice that
, we have,
so,
Since
, and
, we have,
. Hence,
or,
There are two possibilities: (1)
, or (2)
. However, (2) would mean
, then
would be a diameter, and
because
is inside the circle, so (2) is not valid. From condition (1), we have
, therefore
.
Solution by Mathdummy
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
| 2007 IMO (Problems) • Resources | ||
| Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
| All IMO Problems and Solutions | ||