1973 Canadian MO Problems/Problem 5: Difference between revisions
m Created page with "==Problem== ==Solution== ==See also== *1973 Canadian MO {{CanadaMO box|year=1973||num-b=4||num-a=6}}" |
m →Problem |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
For every positive integer <math>n</math>, let <math>h(n) = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}</math>. | |||
For example, <math>h(1) = 1, h(2) = 1+\frac{1}{2}, h(3) = 1+\frac{1}{2}+\frac{1}{3}</math>. | |||
Prove that <math>n+h(1)+h(2)+h(3)+\cdots+h(n-1) = nh(n)\qquad</math> for <math>n=2,3,4,\ldots</math> | |||
==Solution== | ==Solution== | ||