Art of Problem Solving

1992 AIME Problems/Problem 9: Difference between revisions

Solution 4
Jj empire10 (talk | contribs)
No edit summary
 
(15 intermediate revisions by 8 users not shown)
Line 2: Line 2:
Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>.
Trapezoid <math>ABCD^{}_{}</math> has sides <math>AB=92^{}_{}</math>, <math>BC=50^{}_{}</math>, <math>CD=19^{}_{}</math>, and <math>AD=70^{}_{}</math>, with <math>AB^{}_{}</math> parallel to <math>CD^{}_{}</math>. A circle with center <math>P^{}_{}</math> on <math>AB^{}_{}</math> is drawn tangent to <math>BC^{}_{}</math> and <math>AD^{}_{}</math>. Given that <math>AP^{}_{}=\frac mn</math>, where <math>m^{}_{}</math> and <math>n^{}_{}</math> are relatively prime positive integers, find <math>m+n^{}_{}</math>.


== Solution 1==
==Solution 1==
Let <math>AP=x</math> so that <math>PB=92-x.</math> Extend <math>AD, BC</math> to meet at <math>X,</math> and note that <math>XP</math> bisects <math>\angle AXB;</math> let it meet <math>CD</math> at <math>E.</math> Using the angle bisector theorem, we let <math>XB=y(92-x), XA=xy</math> for some <math>y.</math>
 
Then <math>XD=xy-70, XC=y(92-x)-50,</math> thus <cmath>\frac{xy-70}{y(92-x)-50} = \frac{XD}{XC} = \frac{ED}{EC}=\frac{AP}{PB} = \frac{x}{92-x},</cmath> which we can rearrange, expand and cancel to get <math>120x=70\cdot 92,</math> hence <math>AP=x=\frac{161}{3}</math>. This gives us a final answer of <math>161+3=\boxed{164}</math>
 
== Video Solution by Pi Academy ==
 
https://youtu.be/fHFD0TEfBnA?si=DRKVU_As7Rv0ou5D
 
~ Pi Academy (Like and Subscribe!)
 
== Solution 2==
Let <math>AB</math> be the base of the trapezoid and consider angles <math>A</math> and <math>B</math>.  Let <math>x=AP</math> and let <math>h</math> equal the height of the trapezoid.  Let <math>r</math> equal the radius of the circle.
Let <math>AB</math> be the base of the trapezoid and consider angles <math>A</math> and <math>B</math>.  Let <math>x=AP</math> and let <math>h</math> equal the height of the trapezoid.  Let <math>r</math> equal the radius of the circle.


Then
Then


<math>(1) \sin{A}= \frac{r}{x} = \frac{h}{70}</math>  and <math>\sin{B}= \frac{r}{92-x}  =  \frac{h}{50}</math>  
<cmath>\sin{A}= \frac{r}{x} = \frac{h}{70}\qquad\text{ and }\qquad\sin{B}= \frac{r}{92-x}  =  \frac{h}{50}.\tag{1}</cmath>


Let <math>z</math> be the distance along <math>AB</math> from <math>A</math> to where the perp from <math>D</math> meets <math>AB</math>.  
Let <math>z</math> be the distance along <math>AB</math> from <math>A</math> to where the perp from <math>D</math> meets <math>AB</math>.  


Then <math>h^2 +z^2 =70^2</math>  and <math>(73-z)^2 + h^2 =50^2</math>  so <math>h =\frac{\sqrt{44710959}}{146}</math>  
Then <math>h^2 +z^2 =70^2</math>  and <math>(73-z)^2 + h^2 =50^2</math>  so <math>h =\frac{\sqrt{44710959}}{146}</math>.
now substitute this into <math>(1)</math> to get <math>x= \frac{11753}{219} = \frac{161}{3}</math> and <math>m+n = 164</math>.
We can substitute this into <math>(1)</math> to find that <math>x= \frac{11753}{219} = \frac{161}{3}</math> and <math>m+n = 164</math>.


you don't have to use trig nor angles A and B. From similar triangles,  
<b>Remark:</b> One can come up with the equations in <math>(1)</math> without directly resorting to trig. From similar triangles,  
<math>h/r = 70/x</math>  and <math>h/r = 50/ (92-x)</math>
<math>h/r = 70/x</math>  and <math>h/r = 50/ (92-x)</math>. This implies that <math>70/x =50/(92-x)</math>, so <math>x = 161/3</math>.


this implies that <math>70/x =50/(92-x)</math>  so <math>x = 161/3</math>
== Solution 3 ==
 
== Solution 2 ==
From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>.
From <math>(1)</math> above, <math>x = \frac{70r}{h}</math> and <math>92-x = \frac{50r}{h}</math>. Adding these equations yields <math>92 = \frac{120r}{h}</math>. Thus, <math>x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}</math>, and <math>m+n = \boxed{164}</math>.


We can use <math>(1)</math> from Solution 1 to find that <math>h/r = 70/x</math>  and <math>h/r = 50/ (92-x)</math>.


This implies that  <math>70/x =50/(92-x)</math> so <math>x = 161/3</math>


== Solution 4 ==
Extend <math>AD</math> and <math>BC</math> to meet at a point <math>X</math>. Since <math>AB</math> and <math>CD</math> are parallel, <math>\triangle XCD \sim \triangle XAB</math>. If <math>XA</math> is further extended to a point <math>A'</math> and <math>XB</math> is extended to a point <math>B'</math> such that <math>A'B'</math> is tangent to circle <math>P</math>, we discover that circle <math>P</math> is the incircle of triangle <math>XA'B'</math>. Then line <math>XP</math> is the angle bisector of <math>\angle AXB</math>. By homothety, <math>P</math> is the intersection of the angle bisector of <math>\triangle XAB</math> with <math>AB</math>. By the angle bisector theorem,


from solution 1 we get from 1 that  h/r = 70/x  and h/r = 50/ (92-x)
<cmath>\begin{align*}
 
this implies that  70/x =50/(92-x)  so x = 161/3
 
== Solution 3 ==
Extend <math>AD</math> and <math>BC</math> to meet at a point <math>X</math>. Since <math>AB</math> and <math>CD</math> are parallel, <math>\triangle XCD ~ \triangle XAB</math>. If <math>AX</math> is further extended to a point <math>A'</math> and <math>XB</math> is extended to a point <math>B'</math> such that <math>A'B'</math> is tangent to circle <math>P</math>, we discover that circle <math>P</math> is the incircle of triangle <math>XA'B'</math>. Then line <math>XP</math> is the angle bisector of <math>\angle AXB</math>. By homothety, <math>P</math> is the intersection of the angle bisector of <math>\triangle XAB</math> with <math>AB</math>. By the angle bisector theorem,
 
<math>\begin{align*}
\frac{AX}{AP} &= \frac{XB}{BP}\\
\frac{AX}{AP} &= \frac{XB}{BP}\\
\frac{AX}{AP} - \frac{XD}{AP} &= \frac{XB}{BP} - \frac{XC}{BP}\\
\frac{AX}{AP} - \frac{XD}{AP} &= \frac{XB}{BP} - \frac{XC}{BP}\\
\frac{AD}{AP} &= \frac{BD}{PB}\\
\frac{AD}{AP} &= \frac{BC}{BP}\\
&=\frac{7}{5}
&=\frac{7}{5}
\end{align*}</math>
\end{align*}</cmath>


Let <math>7a = AP</math>, then <math>AB = 7a + 5a = 12a</math>. <math>AP = \frac{7}{12}(AB) = \frac{92\times 7}{12} = \frac{161}{3}</math>. Thus, <math>m + n = 164</math>.
Let <math>7a = AP</math>, then <math>AB = 7a + 5a = 12a</math>. <math>AP = \frac{7}{12}(AB) = \frac{92\times 7}{12} = \frac{161}{3}</math>. Thus, <math>m + n = 164</math>.


==Solution 4==
Note: this solution shows that the length of <math>CD</math> is irrelevant as long as there still exists a circle as described in the problem.
 
==Solution 5==
The area of the trapezoid is <math>\frac{(19+92)h}{2}</math>, where <math>h</math> is the height of the trapezoid.
The area of the trapezoid is <math>\frac{(19+92)h}{2}</math>, where <math>h</math> is the height of the trapezoid.


Draw lines CP and BP. We can now find the area of the trapezoid as the sum of the three triangles BPC, CPD, and PBA.
Draw lines <math>CP</math> and <math>BP</math>. We can now find the area of the trapezoid as the sum of the areas of the three triangles <math>BPC</math>, <math>CPD</math>, and <math>PBA</math>.


[BPC] = <math>\frac{1}{2} * 50 * r</math> (where <math>r</math> is the radius of the tangent circle.)
<math>[BPC] = \frac{1}{2} \cdot 50 \cdot r</math> (where <math>r</math> is the radius of the tangent circle.)


[CPD] = <math>\frac{1}{2} * 19 * h</math>
<math>[CPD] = \frac{1}{2} \cdot 19 \cdot h</math>


[PBA] = <math>\frac{1}{2} * 70 * r</math>
<math>[PBA] = \frac{1}{2} \cdot 70 \cdot r</math>


[BPC] + [CPD] + [PBA] = <math>60r + \frac{19h}{2}</math> = Trapezoid area = <math>\frac{(19+92)h}{2}</math>
<math>[BPC] + [CPD] + [PBA] = 60r + \frac{19h}{2} = [ABCD] = \frac{(19+92)h}{2}</math>


<math>60r = 46h</math>
<math>60r = 46h</math>
Line 60: Line 68:
From Solution 1 above, <math>\frac{h}{70} = \frac{r}{x}</math>
From Solution 1 above, <math>\frac{h}{70} = \frac{r}{x}</math>


Substituting <math>r = \frac{23h}{30}</math>, we get <math>x = \frac{161}{3}</math> --> <math>\boxed{164}</math>.
Substituting <math>r = \frac{23h}{30}</math>, we find <math>x = \frac{161}{3}</math>, hence the answer is <math>\boxed{164}</math>.
==Solution 6==
As the problem tells, the circle is tangent to both sides <math>AD,BC</math>, we can make it up to a triangle <math>QAB</math> and <math>P</math> must lie on its angular bisector. Then we know that <math>AP:BP=7:5</math>, which makes <math>AP = \frac{7}{12}(AB) = \frac{92\times 7}{12} = \frac{161}{3}</math>. Thus, <math>m + n = 164</math>.


== See also ==
== See also ==

Latest revision as of 20:03, 8 December 2024

Problem

Trapezoid $ABCD^{}_{}$ has sides $AB=92^{}_{}$, $BC=50^{}_{}$, $CD=19^{}_{}$, and $AD=70^{}_{}$, with $AB^{}_{}$ parallel to $CD^{}_{}$. A circle with center $P^{}_{}$ on $AB^{}_{}$ is drawn tangent to $BC^{}_{}$ and $AD^{}_{}$. Given that $AP^{}_{}=\frac mn$, where $m^{}_{}$ and $n^{}_{}$ are relatively prime positive integers, find $m+n^{}_{}$.

Solution 1

Let $AP=x$ so that $PB=92-x.$ Extend $AD, BC$ to meet at $X,$ and note that $XP$ bisects $\angle AXB;$ let it meet $CD$ at $E.$ Using the angle bisector theorem, we let $XB=y(92-x), XA=xy$ for some $y.$

Then $XD=xy-70, XC=y(92-x)-50,$ thus \[\frac{xy-70}{y(92-x)-50} = \frac{XD}{XC} = \frac{ED}{EC}=\frac{AP}{PB} = \frac{x}{92-x},\] which we can rearrange, expand and cancel to get $120x=70\cdot 92,$ hence $AP=x=\frac{161}{3}$. This gives us a final answer of $161+3=\boxed{164}$

Video Solution by Pi Academy

https://youtu.be/fHFD0TEfBnA?si=DRKVU_As7Rv0ou5D

~ Pi Academy (Like and Subscribe!)

Solution 2

Let $AB$ be the base of the trapezoid and consider angles $A$ and $B$. Let $x=AP$ and let $h$ equal the height of the trapezoid. Let $r$ equal the radius of the circle.

Then

\[\sin{A}= \frac{r}{x} = \frac{h}{70}\qquad\text{ and }\qquad\sin{B}= \frac{r}{92-x}  =  \frac{h}{50}.\tag{1}\]

Let $z$ be the distance along $AB$ from $A$ to where the perp from $D$ meets $AB$.

Then $h^2 +z^2 =70^2$ and $(73-z)^2 + h^2 =50^2$ so $h =\frac{\sqrt{44710959}}{146}$. We can substitute this into $(1)$ to find that $x= \frac{11753}{219} = \frac{161}{3}$ and $m+n = 164$.

Remark: One can come up with the equations in $(1)$ without directly resorting to trig. From similar triangles, $h/r = 70/x$ and $h/r = 50/ (92-x)$. This implies that $70/x =50/(92-x)$, so $x = 161/3$.

Solution 3

From $(1)$ above, $x = \frac{70r}{h}$ and $92-x = \frac{50r}{h}$. Adding these equations yields $92 = \frac{120r}{h}$. Thus, $x = \frac{70r}{h} = \frac{7}{12}\cdot\frac{120r}{h} = \frac{7}{12}\cdot92 = \frac{161}{3}$, and $m+n = \boxed{164}$.

We can use $(1)$ from Solution 1 to find that $h/r = 70/x$ and $h/r = 50/ (92-x)$.

This implies that $70/x =50/(92-x)$ so $x = 161/3$

Solution 4

Extend $AD$ and $BC$ to meet at a point $X$. Since $AB$ and $CD$ are parallel, $\triangle XCD \sim \triangle XAB$. If $XA$ is further extended to a point $A'$ and $XB$ is extended to a point $B'$ such that $A'B'$ is tangent to circle $P$, we discover that circle $P$ is the incircle of triangle $XA'B'$. Then line $XP$ is the angle bisector of $\angle AXB$. By homothety, $P$ is the intersection of the angle bisector of $\triangle XAB$ with $AB$. By the angle bisector theorem,

\begin{align*} \frac{AX}{AP} &= \frac{XB}{BP}\\ \frac{AX}{AP} - \frac{XD}{AP} &= \frac{XB}{BP} - \frac{XC}{BP}\\ \frac{AD}{AP} &= \frac{BC}{BP}\\ &=\frac{7}{5} \end{align*}

Let $7a = AP$, then $AB = 7a + 5a = 12a$. $AP = \frac{7}{12}(AB) = \frac{92\times 7}{12} = \frac{161}{3}$. Thus, $m + n = 164$.

Note: this solution shows that the length of $CD$ is irrelevant as long as there still exists a circle as described in the problem.

Solution 5

The area of the trapezoid is $\frac{(19+92)h}{2}$, where $h$ is the height of the trapezoid.

Draw lines $CP$ and $BP$. We can now find the area of the trapezoid as the sum of the areas of the three triangles $BPC$, $CPD$, and $PBA$.

$[BPC] = \frac{1}{2} \cdot 50 \cdot r$ (where $r$ is the radius of the tangent circle.)

$[CPD] = \frac{1}{2} \cdot 19 \cdot h$

$[PBA] = \frac{1}{2} \cdot 70 \cdot r$

$[BPC] + [CPD] + [PBA] = 60r + \frac{19h}{2} = [ABCD] = \frac{(19+92)h}{2}$

$60r = 46h$

$r = \frac{23h}{30}$

From Solution 1 above, $\frac{h}{70} = \frac{r}{x}$

Substituting $r = \frac{23h}{30}$, we find $x = \frac{161}{3}$, hence the answer is $\boxed{164}$.

Solution 6

As the problem tells, the circle is tangent to both sides $AD,BC$, we can make it up to a triangle $QAB$ and $P$ must lie on its angular bisector. Then we know that $AP:BP=7:5$, which makes $AP = \frac{7}{12}(AB) = \frac{92\times 7}{12} = \frac{161}{3}$. Thus, $m + n = 164$.

See also

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.