Art of Problem Solving

2010 AMC 10A Problems/Problem 6: Difference between revisions

T90bag (talk | contribs)
No edit summary
Bearjere (talk | contribs)
m LaTeX parenthesis fix
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== Problem 6 ==
== Problem 6 ==
For positive numbers <math>x</math> and <math>y</math> the operation <math>\spadesuit(x, y)</math> is defined as  
For positive numbers <math>x</math> and <math>y</math> the operation <math>\spadesuit (x,y)</math> is defined as  


<cmath>\spadesuit(x, y) = x -\dfrac{1}{y}</cmath>
<cmath>\spadesuit (x,y) = x-\dfrac{1}{y}</cmath>


What is <math>\spadesuit(2,\spadesuit(2, 2))</math>?
What is <math>\spadesuit (2,\spadesuit (2,2))</math>?


<math>
<math>
Line 19: Line 19:


==Solution==
==Solution==
<math>\spadesuit(2, 2) = 2 - \frac{1}{2} = \frac{3}{2}</math>. Then, <math>\spadesuit(2, \frac{3}{2})</math> is <math>2-\frac{1}{\frac{3}{2}} = 2- \frac{2}{3} = \frac{4}{3}</math>
<math>\spadesuit (2,2) =2-\frac{1}{2} =\frac{3}{2}</math>. Then, <math>\spadesuit \left(2,\frac{3}{2}\right)</math> is <math>2-\frac{1}{\frac{3}{2}} = 2- \frac{2}{3} = \frac{4}{3}</math>
The answer is <math>\boxed{C}</math>
The answer is <math>\boxed{C}</math>
==Solution 2==
<cmath>\spadesuit (x, y) \text{is defined as } x - \frac{1}{y} \text{. Hence } \spadesuit (2,\spadesuit(2, 2)) =2 - \frac{1}{\spadesuit (2, 2)} =
2 - \frac{1}{2 - \frac{1}{2}}=2-\frac{1}{\frac{3}{2}}=2-\frac{2}{3}=\frac{4}{3}\Longrightarrow \boxed{\textbf{(C) } \frac{4}{3}}</cmath>
==Video Solution==
https://youtu.be/P7rGLXp_6es
~IceMatrix
== See Also ==
{{AMC10 box|year=2010|ab=A|num-b=5|num-a=7}}
{{MAA Notice}}

Latest revision as of 17:58, 31 August 2022

Problem 6

For positive numbers $x$ and $y$ the operation $\spadesuit (x,y)$ is defined as

\[\spadesuit (x,y) = x-\dfrac{1}{y}\]

What is $\spadesuit (2,\spadesuit (2,2))$?

$\mathrm{(A)}\ \dfrac{2}{3} \qquad \mathrm{(B)}\ 1 \qquad \mathrm{(C)}\ \dfrac{4}{3} \qquad \mathrm{(D)}\ \dfrac{5}{3} \qquad \mathrm{(E)}\ 2$

Solution

$\spadesuit (2,2) =2-\frac{1}{2} =\frac{3}{2}$. Then, $\spadesuit \left(2,\frac{3}{2}\right)$ is $2-\frac{1}{\frac{3}{2}} = 2- \frac{2}{3} = \frac{4}{3}$ The answer is $\boxed{C}$

Solution 2

\[\spadesuit (x, y) \text{is defined as } x - \frac{1}{y} \text{. Hence } \spadesuit (2,\spadesuit(2, 2)) =2 - \frac{1}{\spadesuit (2, 2)} =  2 - \frac{1}{2 - \frac{1}{2}}=2-\frac{1}{\frac{3}{2}}=2-\frac{2}{3}=\frac{4}{3}\Longrightarrow \boxed{\textbf{(C) } \frac{4}{3}}\]

Video Solution

https://youtu.be/P7rGLXp_6es

~IceMatrix

See Also

2010 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.