|
|
| Line 1: |
Line 1: |
| ==Problem==
| | #REDIRECT [[2000 AMC 12 Problems/Problem 11]] |
| | |
| Two non-zero real numbers, <math>a</math> and <math>b</math>, satisfy <math>ab=a-b</math>. Find a possible value of <math>\frac{a}{b}+\frac{b}{a}-ab</math>.
| |
| | |
| <math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2</math>
| |
| | |
| ==Solution==
| |
| | |
| <center>
| |
| <math>\begin{align*}
| |
| \frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\
| |
| &= \frac{-a^2b^2+a^2+b^2}{ab}\\
| |
| \end(align*}</math>
| |
| </center>
| |
| | |
| Substituting <math>ab=a-b</math>, we get
| |
| | |
| <center>
| |
| <math>\begin{align*}
| |
| \frac{-(a-b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\
| |
| &= \frac{2ab}{ab} \\
| |
| &= 2 \\
| |
| \end{align*}</math>
| |
| </center>
| |
| | |
| <math>\boxed{\text{E}}</math>
| |
| | |
| ==See Also==
| |
| | |
| {{AMC10 box|year=2000|num-b=14|num-a=16}}
| |