2025 AMC 12A Problems/Problem 8: Difference between revisions
Geohater715 (talk | contribs) |
Mrenthusiasm (talk | contribs) |
||
| (20 intermediate revisions by 7 users not shown) | |||
| Line 3: | Line 3: | ||
<imath>\textbf{(A) } \frac{57}{11} \qquad\textbf{(B) } \frac{59}{11} \qquad\textbf{(C) } \frac{60}{11} \qquad\textbf{(D) } \frac{61}{11} \qquad\textbf{(E) } \frac{63}{11}</imath> | <imath>\textbf{(A) } \frac{57}{11} \qquad\textbf{(B) } \frac{59}{11} \qquad\textbf{(C) } \frac{60}{11} \qquad\textbf{(D) } \frac{61}{11} \qquad\textbf{(E) } \frac{63}{11}</imath> | ||
== Diagram == | |||
<asy> | |||
/* Made by MRENTHUSIASM */ | |||
size(200); | |||
real r = 7*sqrt(3); | |||
pair O, A, B, C, D, E, F; | |||
O = origin; | |||
B = r*dir(30); | |||
C = r*dir(-30); | |||
D = r*dir(-90); | |||
E = r*dir(180); | |||
A = intersectionpoints(Circle(O,r),Circle(B,9))[0]; | |||
F = intersectionpoint(A--C,B--D); | |||
draw(Circle(O,r)^^A--B--C--D--E--cycle^^D--B--E--C--A--cycle); | |||
dot("$B$",B,1.5*B/r,linewidth(4)); | |||
dot("$C$",C,1.5*C/r,linewidth(4)); | |||
dot("$D$",D,1.5*D/r,linewidth(4)); | |||
dot("$E$",E,1.5*E/r,linewidth(4)); | |||
dot("$A$",A,1.5*A/r,linewidth(4)); | |||
dot("$F$",F,1.5*F/r,linewidth(4)); | |||
label("$30^{\circ}$",E,6*(1,0),fontsize(8)); | |||
label("$30^{\circ}$",E,7*dir(-32),fontsize(8)); | |||
label("$9$",0.92*midpoint(A--B)); | |||
label("$24$",1.8*midpoint(A--D)); | |||
</asy> | |||
~MRENTHUSIASM | |||
== Solution 1== | == Solution 1== | ||
We will scale down the diagram by a factor of <imath>3</imath> so that <imath>AB = 3</imath> and <imath>AD = 8</imath> | We will scale down the diagram by a factor of <imath>3</imath> so that <imath>AB = 3</imath> and <imath>AD = 8.</imath> Because <imath>\angle BEC = 30^{\circ},</imath> then <imath>\angle BAC = \angle BDC = 30^{\circ}</imath> because they all subtend the same arc. Similarly, because <imath>\angle CED = 30^{\circ},</imath> <imath>\angle CAD = \angle CBD = 30^{\circ}</imath> as well. | ||
We obtain the following diagram: | |||
<asy> | |||
/* Made by MRENTHUSIASM */ | |||
size(200); | |||
real r = 7*sqrt(3); | |||
pair O, A, B, C, D, E, F; | |||
O = origin; | |||
B = r*dir(30); | |||
C = r*dir(-30); | |||
D = r*dir(-90); | |||
E = r*dir(180); | |||
A = intersectionpoints(Circle(O,r),Circle(B,9))[0]; | |||
F = intersectionpoint(A--C,B--D); | |||
draw(Circle(O,r)^^B--C--D--E--A^^B--E--C--F); | |||
<cmath>BD^2 = AB^2+AD^2-2AB\cdot AD \cdot\cos{60} | draw(A--D--B--cycle^^A--F,red); | ||
dot("$B$",B,1.5*B/r,linewidth(4)); | |||
dot("$C$",C,1.5*C/r,linewidth(4)); | |||
So, <imath>BD = 7</imath> | dot("$D$",D,1.5*D/r,linewidth(4)); | ||
<cmath>\frac{AB}{BF} = \frac{AD}{DF} | dot("$E$",E,1.5*E/r,linewidth(4)); | ||
dot("$A$",A,1.5*A/r,linewidth(4)); | |||
Solving for <imath>BF</imath> | dot("$F$",F,1.5*F/r,linewidth(4)); | ||
label("$30^{\circ}$",E,6*(1,0),fontsize(8)); | |||
label("$30^{\circ}$",E,7*dir(-32),fontsize(8)); | |||
label("$30^{\circ}$",A,9*dir(-56),red+fontsize(8)); | |||
label("$30^{\circ}$",A,9*dir(-84),red+fontsize(8)); | |||
label("$3$",1.1*midpoint(A--B),red); | |||
label("$8$",0.4*midpoint(A--D),red); | |||
</asy> | |||
Note that <imath>\triangle ABD</imath> has <imath>\angle BAD = 60^{\circ}.</imath> Applying Law of Cosines, we get | |||
<cmath>\begin{align*} | |||
BD^2 &= AB^2+AD^2-2AB\cdot AD \cdot\cos{60^{\circ}} \\ | |||
&= 9 + 64 - 2 \cdot 3 \cdot 8 \cdot \frac{1}{2} \\ | |||
&= 49. | |||
\end{align*}</cmath> | |||
So, <imath>BD = 7.</imath> From here, we want <imath>BF.</imath> Noticing that <imath>AF</imath> is the angle bisector of <imath>\angle BAD,</imath> we apply the Angle Bisector Theorem: | |||
<cmath>\begin{align*} | |||
\frac{AB}{BF} &= \frac{AD}{DF} \\ | |||
\frac{3}{BF} &= \frac{8}{7-BF}. | |||
\end{align*}</cmath> | |||
Solving for <imath>BF,</imath> we get <imath>BF = \frac{21}{11}.</imath> Remember to scale the figure back up by a factor of <imath>3,</imath> so our answer is <imath>\frac{21}{11}\cdot 3 = \boxed{\textbf{(E) } \frac{63}{11}}.</imath> | |||
~lprado | ~lprado | ||
==Solution 2 Law of (Co)Sine== | ==Solution 2 Law of (Co)Sine== | ||
| Line 29: | Line 89: | ||
==Solution 3 (Ptolemy’s + Similarity)== | ==Solution 3 (Ptolemy’s + Similarity)== | ||
We have <imath>ABCDE</imath> cyclic, so <imath>\angle BAC=\angle CAD=\angle BEC=30^\circ </imath>. Hence cyclic quadrilateral <imath>ABCD</imath> has <imath>\angle BAD=60\circ </imath>. Law of Cosines on triangle <imath>BAD</imath> gives <imath>\overline{BD}^2=9^2+24^2-2\cdot9\cdot24\cos60^\circ </imath>. Hence <imath>\overline{BD}=21</imath>. Since triangle <imath>BCD</imath> is a 120-30-30 triangle, we can use law of sines or just memorize ratios to get <imath>\overline{BC}=\overline{CD}=7\sqrt3</imath>. Now Ptolemy’s on <imath>ABCD</imath> yields <imath>7\sqrt3(9+24)=21\overline{AC}</imath>. Hence <imath>\overline{AC}=11\sqrt3</imath>. Now notice that <imath>\angle BCF=\angle ACB</imath>, and <imath>\angle CBF=\angle CAB=30^\circ</imath>. Hence triangles <imath>CBF</imath> and <imath>CAB</imath> are similar, and <imath>\frac{\overline{BF}}{\overline{BC}}=\frac{\overline{AB}}{\overline{AC}}</imath>, so <imath>\frac{\overline{BF}}{7\sqrt3}=\frac9{11\sqrt3}</imath> and <imath>\overline{BF}=\frac{63}{11}</imath>, or <imath>\boxed{\textit{E}}</imath>. | We have <imath>ABCDE</imath> cyclic, so <imath>\angle BAC=\angle CAD=\angle BEC=30^\circ </imath>. Hence cyclic quadrilateral <imath>ABCD</imath> has <imath>\angle BAD=60^\circ </imath>. Law of Cosines on triangle <imath>BAD</imath> gives <imath>\overline{BD}^2=9^2+24^2-2\cdot9\cdot24\cos60^\circ </imath>. Hence <imath>\overline{BD}=21</imath>. Since triangle <imath>BCD</imath> is a 120-30-30 triangle, we can use law of sines or just memorize ratios to get <imath>\overline{BC}=\overline{CD}=7\sqrt3</imath>. Now Ptolemy’s on <imath>ABCD</imath> yields <imath>7\sqrt3(9+24)=21\overline{AC}</imath>. Hence <imath>\overline{AC}=11\sqrt3</imath>. Now notice that <imath>\angle BCF=\angle ACB</imath>, and <imath>\angle CBF=\angle CAB=30^\circ</imath>. Hence triangles <imath>CBF</imath> and <imath>CAB</imath> are similar, and <imath>\frac{\overline{BF}}{\overline{BC}}=\frac{\overline{AB}}{\overline{AC}}</imath>, so <imath>\frac{\overline{BF}}{7\sqrt3}=\frac9{11\sqrt3}</imath> and <imath>\overline{BF}=\frac{63}{11}</imath>, or <imath>\boxed{\textit{E}}</imath>. | ||
~benjamintontungtungtungsahur (look guys im famous) | ~benjamintontungtungtungsahur (look guys im famous) | ||
==Video Solution by Power Solve== | |||
https://youtu.be/Vd_kvodRjNQ?si=ZuoUjGLXcZter8PB&t=753 | |||
==Video Solution 4 by SpreadTheMathLove== | |||
https://www.youtube.com/watch?v=ycwWI10M244 | |||
==See Also== | |||
{{AMC12 box|year=2025|ab=A|num-b=7|num-a=9}} | |||
* [[AMC 12]] | |||
* [[AMC 12 Problems and Solutions]] | |||
* [[Mathematics competitions]] | |||
* [[Mathematics competition resources]] | |||
{{MAA Notice}} | |||
Latest revision as of 22:28, 11 November 2025
Problem
Pentagon
is inscribed in a circle, and
. Let line
and line
intersect at point
, and suppose that
and
. What is
?
Diagram
~MRENTHUSIASM
Solution 1
We will scale down the diagram by a factor of
so that
and
Because
then
because they all subtend the same arc. Similarly, because
as well.
We obtain the following diagram:
Note that
has
Applying Law of Cosines, we get
So,
From here, we want
Noticing that
is the angle bisector of
we apply the Angle Bisector Theorem:
Solving for
we get
Remember to scale the figure back up by a factor of
so our answer is
~lprado
Solution 2 Law of (Co)Sine
From cyclic quadrilateral
, we have
Since
is also cyclic, we have
, so,
Using Law of Cosines on
, we get
Solving, we get
. Next, let
, and
, which means
and
. Using Law of Sines on
, we have
Solving for
, we get
. Now we apply the Law of Sines to
We have
Since
and
, we have
Solving for
gives
or
.
~evanhliu2009
Solution 3 (Ptolemy’s + Similarity)
We have
cyclic, so
. Hence cyclic quadrilateral
has
. Law of Cosines on triangle
gives
. Hence
. Since triangle
is a 120-30-30 triangle, we can use law of sines or just memorize ratios to get
. Now Ptolemy’s on
yields
. Hence
. Now notice that
, and
. Hence triangles
and
are similar, and
, so
and
, or
.
~benjamintontungtungtungsahur (look guys im famous)
Video Solution by Power Solve
https://youtu.be/Vd_kvodRjNQ?si=ZuoUjGLXcZter8PB&t=753
Video Solution 4 by SpreadTheMathLove
https://www.youtube.com/watch?v=ycwWI10M244
See Also
| 2025 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 7 |
Followed by Problem 9 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.