Art of Problem Solving

2025 AMC 12A Problems/Problem 24: Difference between revisions

Kms888 (talk | contribs)
Yunboz (talk | contribs)
 
(31 intermediate revisions by 11 users not shown)
Line 1: Line 1:
== Problem ==
== Problem ==
A circle of radius <imath>r</imath> is surrounded by <imath>12</imath> circles of radius <imath>1,</imath> externally tangent to the central circle and sequentially tangent to each other, as shown. Then <imath>r</imath> can be written as <imath>\sqrt a + \sqrt b + c,</imath> where <imath>a, b, c</imath> are integers. What is <imath>a+ b+c?</imath>
A circle of radius <imath>r</imath> is surrounded by <imath>12</imath> circles of radius <imath>1,</imath> externally tangent to the central circle and sequentially tangent to each other, as shown. Then <imath>r</imath> can be written as <imath>\sqrt a + \sqrt b + c,</imath> where <imath>a, b, c</imath> are integers. What is <imath>a+b+c?</imath>


[center][img width=60]https://wiki.randommath.com/amc/2025_11_05_e415ed6e80d65fa550edg-7.jpg[/img][/center]
<asy>
defaultpen(fontsize(12)+linewidth(1)); size(200);
real r=2.925, x=360/12;
pair O=origin;
draw(CR(O,r),black+1.5);
for (int i = 0; i<12; ++i) {
draw(CR((r+1)*dir(i*x),1));
}
dot(O); dot((r+1)*right);
draw(O--(r,0)^^(r+1,0)--(r+2,0), linewidth(0.5));
label("$r$",(r/2,0),up);
label("$1$",(r+3/2,0),up);
</asy>


<imath>\textbf{(A) } 3 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 11</imath>
<imath>\textbf{(A) } 3 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 11</imath>


== Solution 1(No sin15) ==
== Solution 1 (Sin 15) ==
Let the center of the large circle be <imath>O</imath> and the centers of the <imath>12</imath> circles be <imath>A_1, A_2, A_3, \dots, A_{12}</imath>. Triangle <imath>OA_1A_2</imath> has side lengths <imath>r+1, r+1, 2</imath>, with the angle opposite <imath>2</imath> being <imath>360/12 = 30</imath>.
 
Drawing the angle bisector of the <imath>30</imath> degree angle, we split <imath>OA_1A_2</imath> into two congruent right triangles, each with hypotenuse <imath>r+1</imath> and side opposite the <imath>15</imath> degree angle <imath>1</imath>.
 
From here, note that <imath>\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}</imath>, which be derived using the trigonometric identity <imath>\sin{(A-B)} = \sin{A} \cos{B} - \sin{B} \cos{A}</imath>, with <imath>A=45</imath> and <imath>B=30</imath>.
 
In our right triangle, <imath>\sin{15} = \frac{1}{r+1} = \frac{\sqrt{6}-\sqrt{2}}{4}</imath>. Let <imath>x=r+1</imath>. Solving for <imath>x</imath>, we get <imath>x = \frac{4}{\sqrt{6}-\sqrt{2}}</imath>. Rationalizing, we get that <imath>x = \sqrt{6}+\sqrt{2}</imath>.
 
Remember <imath>x = r+1 = \sqrt{6}+\sqrt{2}</imath>, so <imath>r = \sqrt{6}+\sqrt{2} - 1</imath>. Therefore, our answer is <imath>6+2-1 = \boxed{7}.</imath>
 
~lprado
 
 
 
Clarification Request: How would triangle <imath>OA_1A_2</imath> have a side length of <imath>2</imath>? The line connecting <imath>A_1</imath> and <imath>A_2</imath> doesn't go through the point of tangency of the respective circles.
 
Answer to Clarification: The segment <imath>A_1A_2</imath> does go through the point of tangency of the two circles, by definition.
 
== Solution 2 (Law of Cosines Bash) ==
Let the center of the large circle be <imath>O</imath> and the centers of any two circles be <imath>A</imath> and <imath>B</imath>. Triangle <imath>OAB</imath> has side lengths <imath>r+1, r+1, 2</imath>, with the angle opposite <imath>2</imath> being <imath>360/12 = 30</imath>.
Let the center of the large circle be <imath>O</imath> and the centers of any two circles be <imath>A</imath> and <imath>B</imath>. Triangle <imath>OAB</imath> has side lengths <imath>r+1, r+1, 2</imath>, with the angle opposite <imath>2</imath> being <imath>360/12 = 30</imath>.


Using Law of Cosines, <imath>2^2=AO^2+BO^2-2AOBO\cos30</imath>. Plugging in the radius yields <imath>2^2=(r+1)^2+(r+1)^2-2(r+1)^2*1/2</imath>. After solving for <imath>r</imath> and simplifying, we get <imath>r=\sqrt6+\sqrt2-1</imath>. Therefore our answer is <imath>7</imath>.
Using Law of Cosines, <imath>2^2=AO^2+BO^2-2AOBO\cos30</imath>. Plugging in the radius yields <imath>2^2=(r+1)^2+(r+1)^2-2(r+1)^2\cdot\frac{\sqrt{3}}{2}</imath>. After solving for <imath>r</imath> and simplifying, we get <imath>r=\sqrt6+\sqrt2-1</imath>. Therefore our answer is <imath>7</imath>.


~Kevin Wang
~Kevin Wang


== Solution 2 ==
===Worked Out Solution===
Let the center of the large circle be <imath>O</imath> and the centers of the <imath>12</imath> circles be <imath>A_1, A_2, A_3, \dots, A_{12}</imath>. Triangle <imath>OA_1A_2</imath> has side lengths <imath>r+1, r+1, 2</imath>, with the angle opposite <imath>2</imath> being <imath>360/12 = 30</imath>.  
<imath>4=(2-\sqrt{3})(r+1)^2</imath>. Divide both sides to get <imath>\frac{4}{2-\sqrt{3}}=(r+1)^2</imath>. Rationalize and expand to get <imath>8+4\sqrt{3}=r^2+2r+1</imath>. Then <imath>r^2+2r+(-7-4\sqrt{3})=0</imath>. Use the quadratic formula to get <imath>r=\frac{-2+\sqrt{4+28+16\sqrt{3}}}{2}</imath>, or <imath>r=-1+\sqrt{8+4\sqrt{3}}</imath> (Note: We only take the plus instead of plus-minus because r must be positive). Clearly <imath>c=-1</imath>, and then we need to find some a and b such that <imath>\sqrt{a} + \sqrt{b} = \sqrt{8+4\sqrt{3}}</imath>. If we square both sides, <imath>a+b+2\sqrt{ab} = 8+4\sqrt{3}</imath>, so <imath>a+b=8</imath>. Plug in our previously found values to find <imath>a+b+c=8+(-1)</imath>. Therefore our answer is <imath>7</imath>.
 
~Samuel and Jungbin
 
 
<imath>\textbf{Remark}</imath>
 
We could've also noticed that <imath>\sqrt{2-\sqrt{3}} = \sqrt{\frac{1}{2}\cdot(4-2\sqrt{3})} = \frac{1}{\sqrt{2}}*\sqrt{3-2\sqrt{3}+1} = \frac{1}{\sqrt{2}}*(\sqrt{3}-1)</imath>, and therefore directly gotten <imath>r+1 = \sqrt{\frac{4}{2-\sqrt{3}}} = \frac{2}{\frac{1}{\sqrt{2}}*(\sqrt{3}-1)} = \frac{2\sqrt{2}}{\sqrt{3}-1}</imath> and solved from there.
 
== Solution 3 (Easy Geo Method) ==
 
We connect the centers of the smaller circles at <imath>0^\circ</imath> and <imath>90^\circ</imath> as follows:
<asy>
import graph;
size(250);
real R = -1 + sqrt(2) + sqrt(6);
real r = 1;
pair O = (0,0);
label("$O$", 0, W);
pair C0 = (R + r) * dir(0);
label("$A$", C0, E);
pair C15 = (R + r) * dir(15);
label("2", C15, NE);
pair C30 = (R + r) * dir(30);
label("$B$", C30, E);
pair C45 = (R + r) * dir(45);
label("2", C45, NE);
pair C60 = (R + r) * dir(60);
label("$C$", C60, NE);
pair C75 = (R + r) * dir(75);
label("2", C75, NE);
pair C90 = (R + r) * dir(90);
label("$D$", C90, N);
pair project(pair P, pair A, pair B) {
pair AB = B - A;
real t = dot(P - A, AB) / dot(AB, AB);
return A + t * AB;
}
pair foot30 = project(C30, C0, C90);
pair foot60 = project(C60, C0, C90);
draw(Circle(O, R), black + linewidth(1bp));
for(int i = 0; i < 12; ++i) {
real theta = i * 360 / 12;
pair center = (R + r) * dir(theta);
draw(Circle(center, r), blue + linewidth(1bp));
}
draw(O -- C0, black + linewidth(1bp));
draw(O -- C90, black + linewidth(1bp));
draw(C0 -- C30, red + linewidth(1bp));
draw(C30 -- C60, red + linewidth(1bp));
draw(C60 -- C90, red + linewidth(1bp));
draw(C0 -- C90, red + linewidth(1bp));
draw(C30 -- foot30, blue + linewidth(1bp));
draw(C60 -- foot60, blue + linewidth(1bp));
</asy>
 
Note that connecting the centers of the 12 smaller circles forms a regular 12-gon. A regular 12-gon has angles
 
<cmath>\frac{10\cdot 180}{12} = 150^\circ,</cmath>
 
so <imath>\angle OAB = \angle ODC = 75^\circ.</imath> Furthermore, since <imath>OA=OD</imath> and <imath>\angle AOD = 90^\circ</imath>, we have <imath>\angle OAD = 45^\circ</imath>, so <imath>\angle DAB = 30^\circ</imath>. Next, we drop the perpendiculars from <imath>B</imath> and <imath>C</imath> to <imath>AD</imath>. This creates a <imath>1 \times 2</imath> rectangle and two <imath>30-60-90</imath> triangles. Thus,
 
<cmath>AD = (r+1)\sqrt{2} = 2+2\sqrt{3},</cmath>
 
and manipulating yields
 
<cmath>r = -1 + \sqrt{2}+\sqrt{6},</cmath>
 
so the desired answer is <imath>-1+2+6 = \boxed{\text{(C) } 7.}</imath>


Drawing the angle bisector of the <imath>30</imath> degree angle, we split <imath>OA_1A_2</imath> into two congruent right triangles, each with hypotenuse <imath>r+1</imath> and side opposite the <imath>15</imath> degree angle <imath>1</imath>.
P.S. I posted the asymptote code here. Anyone that wishes to use it can steal~ :)


From here, note that <imath>\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}</imath>, which be derived using the trigonometric identity <imath>\sin{(A-B)}</imath>, with <imath>A=45</imath> and <imath>B=30</imath>.
~ABC09090927


In our right triangle, <imath>\sin{15} = \frac{1}{r+1} = \frac{\sqrt{6}-\sqrt{2}}{4}</imath>. Let <imath>x=r+1</imath>. Solving for <imath>x</imath>, we get <imath>x = \frac{4}{\sqrt{6}-\sqrt{2}}</imath>. Rationalizing, we get that <imath>x = \sqrt{6}+\sqrt{2}</imath>.
==Video Solution 1 by OmegaLearn==
https://youtu.be/nR67IIw_kgg


Remember <imath>x = r+1 = \sqrt{6}+\sqrt{2}</imath>, so <imath>r = \sqrt{6}+\sqrt{2} - 1</imath>. Therefore, our answer is <imath>6+2-1 = \boxed{7}.</imath>
==Video Solution 2 by SpreadTheMathLove==
https://www.youtube.com/watch?v=dAeyV60Hu5c


~lprado
==See Also==
{{AMC12 box|year=2025|ab=A|num-b=23|num-a=25}}
* [[AMC 12]]
* [[AMC 12 Problems and Solutions]]
* [[Mathematics competitions]]
* [[Mathematics competition resources]]
{{MAA Notice}}

Latest revision as of 20:49, 11 November 2025

Problem

A circle of radius $r$ is surrounded by $12$ circles of radius $1,$ externally tangent to the central circle and sequentially tangent to each other, as shown. Then $r$ can be written as $\sqrt a + \sqrt b + c,$ where $a, b, c$ are integers. What is $a+b+c?$

[asy] defaultpen(fontsize(12)+linewidth(1)); size(200); real r=2.925, x=360/12; pair O=origin; draw(CR(O,r),black+1.5); for (int i = 0; i<12; ++i) {  draw(CR((r+1)*dir(i*x),1)); } dot(O); dot((r+1)*right); draw(O--(r,0)^^(r+1,0)--(r+2,0), linewidth(0.5)); label("$r$",(r/2,0),up); label("$1$",(r+3/2,0),up); [/asy]

$\textbf{(A) } 3 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 7 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 11$

Solution 1 (Sin 15)

Let the center of the large circle be $O$ and the centers of the $12$ circles be $A_1, A_2, A_3, \dots, A_{12}$. Triangle $OA_1A_2$ has side lengths $r+1, r+1, 2$, with the angle opposite $2$ being $360/12 = 30$.

Drawing the angle bisector of the $30$ degree angle, we split $OA_1A_2$ into two congruent right triangles, each with hypotenuse $r+1$ and side opposite the $15$ degree angle $1$.

From here, note that $\sin{15} = \frac{\sqrt{6}-\sqrt{2}}{4}$, which be derived using the trigonometric identity $\sin{(A-B)} = \sin{A} \cos{B} - \sin{B} \cos{A}$, with $A=45$ and $B=30$.

In our right triangle, $\sin{15} = \frac{1}{r+1} = \frac{\sqrt{6}-\sqrt{2}}{4}$. Let $x=r+1$. Solving for $x$, we get $x = \frac{4}{\sqrt{6}-\sqrt{2}}$. Rationalizing, we get that $x = \sqrt{6}+\sqrt{2}$.

Remember $x = r+1 = \sqrt{6}+\sqrt{2}$, so $r = \sqrt{6}+\sqrt{2} - 1$. Therefore, our answer is $6+2-1 = \boxed{7}.$

~lprado


Clarification Request: How would triangle $OA_1A_2$ have a side length of $2$? The line connecting $A_1$ and $A_2$ doesn't go through the point of tangency of the respective circles.

Answer to Clarification: The segment $A_1A_2$ does go through the point of tangency of the two circles, by definition.

Solution 2 (Law of Cosines Bash)

Let the center of the large circle be $O$ and the centers of any two circles be $A$ and $B$. Triangle $OAB$ has side lengths $r+1, r+1, 2$, with the angle opposite $2$ being $360/12 = 30$.

Using Law of Cosines, $2^2=AO^2+BO^2-2AOBO\cos30$. Plugging in the radius yields $2^2=(r+1)^2+(r+1)^2-2(r+1)^2\cdot\frac{\sqrt{3}}{2}$. After solving for $r$ and simplifying, we get $r=\sqrt6+\sqrt2-1$. Therefore our answer is $7$.

~Kevin Wang

Worked Out Solution

$4=(2-\sqrt{3})(r+1)^2$. Divide both sides to get $\frac{4}{2-\sqrt{3}}=(r+1)^2$. Rationalize and expand to get $8+4\sqrt{3}=r^2+2r+1$. Then $r^2+2r+(-7-4\sqrt{3})=0$. Use the quadratic formula to get $r=\frac{-2+\sqrt{4+28+16\sqrt{3}}}{2}$, or $r=-1+\sqrt{8+4\sqrt{3}}$ (Note: We only take the plus instead of plus-minus because r must be positive). Clearly $c=-1$, and then we need to find some a and b such that $\sqrt{a} + \sqrt{b} = \sqrt{8+4\sqrt{3}}$. If we square both sides, $a+b+2\sqrt{ab} = 8+4\sqrt{3}$, so $a+b=8$. Plug in our previously found values to find $a+b+c=8+(-1)$. Therefore our answer is $7$.

~Samuel and Jungbin


$\textbf{Remark}$

We could've also noticed that $\sqrt{2-\sqrt{3}} = \sqrt{\frac{1}{2}\cdot(4-2\sqrt{3})} = \frac{1}{\sqrt{2}}*\sqrt{3-2\sqrt{3}+1} = \frac{1}{\sqrt{2}}*(\sqrt{3}-1)$, and therefore directly gotten $r+1 = \sqrt{\frac{4}{2-\sqrt{3}}} = \frac{2}{\frac{1}{\sqrt{2}}*(\sqrt{3}-1)} = \frac{2\sqrt{2}}{\sqrt{3}-1}$ and solved from there.

Solution 3 (Easy Geo Method)

We connect the centers of the smaller circles at $0^\circ$ and $90^\circ$ as follows: [asy] import graph; size(250); real R = -1 + sqrt(2) + sqrt(6); real r = 1; pair O = (0,0); label("$O$", 0, W); pair C0 = (R + r) * dir(0); label("$A$", C0, E); pair C15 = (R + r) * dir(15); label("2", C15, NE); pair C30 = (R + r) * dir(30); label("$B$", C30, E); pair C45 = (R + r) * dir(45); label("2", C45, NE); pair C60 = (R + r) * dir(60); label("$C$", C60, NE); pair C75 = (R + r) * dir(75); label("2", C75, NE); pair C90 = (R + r) * dir(90); label("$D$", C90, N); pair project(pair P, pair A, pair B) { pair AB = B - A; real t = dot(P - A, AB) / dot(AB, AB); return A + t * AB; } pair foot30 = project(C30, C0, C90); pair foot60 = project(C60, C0, C90); draw(Circle(O, R), black + linewidth(1bp)); for(int i = 0; i < 12; ++i) { real theta = i * 360 / 12; pair center = (R + r) * dir(theta); draw(Circle(center, r), blue + linewidth(1bp)); } draw(O -- C0, black + linewidth(1bp)); draw(O -- C90, black + linewidth(1bp)); draw(C0 -- C30, red + linewidth(1bp)); draw(C30 -- C60, red + linewidth(1bp)); draw(C60 -- C90, red + linewidth(1bp)); draw(C0 -- C90, red + linewidth(1bp)); draw(C30 -- foot30, blue + linewidth(1bp)); draw(C60 -- foot60, blue + linewidth(1bp)); [/asy]

Note that connecting the centers of the 12 smaller circles forms a regular 12-gon. A regular 12-gon has angles

\[\frac{10\cdot 180}{12} = 150^\circ,\]

so $\angle OAB = \angle ODC = 75^\circ.$ Furthermore, since $OA=OD$ and $\angle AOD = 90^\circ$, we have $\angle OAD = 45^\circ$, so $\angle DAB = 30^\circ$. Next, we drop the perpendiculars from $B$ and $C$ to $AD$. This creates a $1 \times 2$ rectangle and two $30-60-90$ triangles. Thus,

\[AD = (r+1)\sqrt{2} = 2+2\sqrt{3},\]

and manipulating yields

\[r = -1 + \sqrt{2}+\sqrt{6},\]

so the desired answer is $-1+2+6 = \boxed{\text{(C) } 7.}$

P.S. I posted the asymptote code here. Anyone that wishes to use it can steal~ :)

~ABC09090927

Video Solution 1 by OmegaLearn

https://youtu.be/nR67IIw_kgg

Video Solution 2 by SpreadTheMathLove

https://www.youtube.com/watch?v=dAeyV60Hu5c

See Also

2025 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.