PaperMath’s sum: Difference between revisions
m Formatting |
|||
| (6 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
PaperMath's sum is a thereom discovered by the AoPS user Papermath on October 8th, 2023. | |||
== Statement == | == Statement == | ||
''' | '''PaperMath’s sum''' states, | ||
<math>\sum_{i=0}^{2n-1} {(10^ix^2)}=(\sum_{j=0}^{n-1}{(10^j3x)})^2 + \sum_{k=0}^{n-1} {(10^k2x^2)}</math> | <math>\sum_{i=0}^{2n-1} {\left(10^ix^2\right)}=\left(\sum_{j=0}^{n-1}{\left(10^j3x\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(10^k2x^2\right)}</math> | ||
Or | Or | ||
<math>x^2\sum_{i=0}^{2n-1} {10^i}=(3x \sum_{j=0}^{n-1} {(10^j)})^2 + 2x^2\sum_{k=0}^{n-1} {(10^k)}</math> | <math>x^2\sum_{i=0}^{2n-1} {10^i}=\left(3x \sum_{j=0}^{n-1} {\left(10^j\right)}\right)^2 + 2x^2\sum_{k=0}^{n-1} {\left(10^k\right)}</math> | ||
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | ||
<math>\sum_{i=0}^{2n-1} {10^i}=(\sum_{j=0}^{n -1}{(3 \times 10^j)})^2 + \sum_{k=0}^{n-1} {(2 \times 10^k)}</math> | <math>\sum_{i=0}^{2n-1} {10^i}=\left(\sum_{j=0}^{n -1}{\left(3 \times 10^j\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(2 \times 10^k\right)}</math> | ||
== Proof == | == Proof == | ||
| Line 25: | Line 27: | ||
<math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | <math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | ||
([[AMC | ([[2018 AMC 10A Problems/Problem 25|Source]]) | ||
==See also== | ==See also== | ||
Latest revision as of 15:51, 24 October 2025
PaperMath's sum is a thereom discovered by the AoPS user Papermath on October 8th, 2023.
Statement
PaperMath’s sum states,
Or
For all real values of
, this equation holds true for all nonnegative values of
. When
, this reduces to
Proof
First, note that the
part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that
and
concludes the proof.
Problems
For a positive integer
and nonzero digits
,
, and
, let
be the
-digit integer each of whose digits is equal to
; let
be the
-digit integer each of whose digits is equal to
, and let
be the
-digit (not
-digit) integer each of whose digits is equal to
. What is the greatest possible value of
for which there are at least two values of
such that
?
(Source)
See also
This article is a stub. Help us out by expanding it.