2007 AMC 12B Problems/Problem 19: Difference between revisions
Chickendude (talk | contribs) Added "See Also" |
No edit summary |
||
| (5 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem | ==Problem== | ||
Rhombus <math>ABCD</math>, with side length <math>6</math>, is rolled to form a cylinder of volume <math>6</math> by taping <math>\overline{AB}</math> to <math>\overline{DC}</math>. What is <math>\sin(\angle ABC)</math>? | Rhombus <math>ABCD</math>, with side length <math>6</math>, is rolled to form a cylinder of volume <math>6</math> by taping <math>\overline{AB}</math> to <math>\overline{DC}</math>. What is <math>\sin(\angle ABC)</math>? | ||
<math>\mathrm {(A)} \frac{\pi}{9} | <math>\mathrm{(A)}\ \frac{\pi}{9} \qquad \mathrm{(B)}\ \frac{1}{2} \qquad \mathrm{(C)}\ \frac{\pi}{6} \qquad \mathrm{(D)}\ \frac{\pi}{4} \qquad \mathrm{(E)}\ \frac{\sqrt{3}}{2}</math> | ||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
pair | pair B=(0,0), A=(6*dir(60)), C=(6,0); | ||
pair | pair D=A+C; | ||
draw(A--B--C--D--A); | draw(A--B--C--D--A); | ||
draw( | draw(A--(3,0)); | ||
label("\(A\)",A, | label("\(A\)",A,NW);label("\(B\)",B,SW);label("\(C\)",C,SE);label("\(D\)",D,NE); | ||
label("\(6\)", | label("\(6\)",A/2,NW); | ||
label("\(\theta\)",(.8,.5)); | label("\(\theta\)",(.8,.5)); | ||
label("\(h\)",(3,2.6),E); | label("\(h\)",(3,2.6),E); | ||
</asy> | </asy> | ||
<math>V_{\mathrm{Cylinder}} = \pi r^2 h</math> | |||
<math>V_{Cylinder} = \pi r^2 h</math> | |||
Where <math>C = 2\pi r = 6</math> and <math>h=6\sin\theta</math> | Where <math>C = 2\pi r = 6</math> and <math>h=6\sin\theta</math> | ||
| Line 33: | Line 31: | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2007|ab=B|num-b= | {{AMC12 box|year=2007|ab=B|num-b=18|num-a=20}} | ||
{{MAA Notice}} | |||
Latest revision as of 15:35, 15 February 2021
Problem
Rhombus
, with side length
, is rolled to form a cylinder of volume
by taping
to
. What is
?
Solution
Where
and
See Also
| 2007 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 18 |
Followed by Problem 20 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.