Art of Problem Solving

1970 AMC 12 Problems/Problem 2: Difference between revisions

CHONGWON (talk | contribs)
1=2 (talk | contribs)
could someone check this?
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is


<math>\mathrm{(A)}\ \frac 2\pi\qquad \mathrm{(B)}\ \frac pi\2\qquad \mathrm{(C)}\ \frac 45\qquad \mathrm{(D)}\ \frac 56\qquad \mathrm{(E)}\ \frac 78</math>
<math>\mathrm{(A)}\ \frac{2}{\pi}\qquad \mathrm{(B)}\ \frac{\pi}{\sqrt{2}}\qquad \mathrm{(C)}\ \frac{4}{5}\qquad \mathrm{(D)}\ \frac{5}{6}\qquad \mathrm{(E)}\ \frac{7}{8}</math>


== Solution ==
== Solution ==
Let the side length of the square be s, and let the radius of the circle be r.
<math>4s=2\pi r</math>, <math>2s=\pi r</math>, <math>\frac{2}{\pi}=\frac{r}{s}</math>
We are looking for <math>\frac{\pi r^2}{s^2}=\frac{2^2\pi}{\pi^2}=\frac{4}{\pi} \Rightarrow \mathrm{(F)}</math>.
==See also==

Latest revision as of 14:49, 9 January 2008

Problem

A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is

$\mathrm{(A)}\ \frac{2}{\pi}\qquad \mathrm{(B)}\ \frac{\pi}{\sqrt{2}}\qquad \mathrm{(C)}\ \frac{4}{5}\qquad \mathrm{(D)}\ \frac{5}{6}\qquad \mathrm{(E)}\ \frac{7}{8}$

Solution

Let the side length of the square be s, and let the radius of the circle be r.

$4s=2\pi r$, $2s=\pi r$, $\frac{2}{\pi}=\frac{r}{s}$

We are looking for $\frac{\pi r^2}{s^2}=\frac{2^2\pi}{\pi^2}=\frac{4}{\pi} \Rightarrow \mathrm{(F)}$.

See also