PaperMath’s sum: Difference between revisions
| (61 intermediate revisions by 12 users not shown) | |||
| Line 1: | Line 1: | ||
PaperMath's sum is a thereom discovered by the AoPS user Papermath on October 8th, 2023. | |||
== | == Statement == | ||
'''PaperMath’s sum''' states, | |||
<math>\sum_{i=0}^{2n} {( | <math>\sum_{i=0}^{2n-1} {\left(10^ix^2\right)}=\left(\sum_{j=0}^{n-1}{\left(10^j3x\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(10^k2x^2\right)}</math> | ||
Or | |||
<math>\sum_{i=0}^{2n} {10^i}=(\sum_{j=0}^n {( | <math>x^2\sum_{i=0}^{2n-1} {10^i}=\left(3x \sum_{j=0}^{n-1} {\left(10^j\right)}\right)^2 + 2x^2\sum_{k=0}^{n-1} {\left(10^k\right)}</math> | ||
For all real values of <math>x</math>, this equation holds true for all nonnegative values of <math>n</math>. When <math>x=1</math>, this reduces to | |||
<math>\sum_{i=0}^{2n} { | <math>\sum_{i=0}^{2n-1} {10^i}=\left(\sum_{j=0}^{n -1}{\left(3 \times 10^j\right)}\right)^2 + \sum_{k=0}^{n-1} {\left(2 \times 10^k\right)}</math> | ||
== Proof == | |||
<math>x^2 | First, note that the <math>x^2</math> part is trivial multiplication, associativity, commutativity, and distributivity over addition, | ||
Observing that | |||
<math>\sum_{i=0}^{n-1} {10^i} = \frac{10^{n}-1}{9}</math> and <math>(10^{2n}-1)/9 = 9((10^{n}-1)/9)^2 + 2(10^n -1)/9</math> concludes the proof. | |||
==Problems== | == Problems == | ||
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>? | ||
| Line 55: | Line 27: | ||
<math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | <math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math> | ||
([[2018 AMC 10A Problems/Problem 25|Source]]) | |||
==See also== | |||
*[[Cyclic sum]] | *[[Cyclic sum]] | ||
*[[Summation]] | *[[Summation]] | ||
| Line 65: | Line 36: | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
[[Category: | [[Category:Theorems]] | ||
{{Stub}} | |||
Latest revision as of 15:51, 24 October 2025
PaperMath's sum is a thereom discovered by the AoPS user Papermath on October 8th, 2023.
Statement
PaperMath’s sum states,
Or
For all real values of
, this equation holds true for all nonnegative values of
. When
, this reduces to
Proof
First, note that the
part is trivial multiplication, associativity, commutativity, and distributivity over addition,
Observing that
and
concludes the proof.
Problems
For a positive integer
and nonzero digits
,
, and
, let
be the
-digit integer each of whose digits is equal to
; let
be the
-digit integer each of whose digits is equal to
, and let
be the
-digit (not
-digit) integer each of whose digits is equal to
. What is the greatest possible value of
for which there are at least two values of
such that
?
(Source)
See also
This article is a stub. Help us out by expanding it.