2020 AMC 12A Problems/Problem 22: Difference between revisions
No edit summary |
|||
| (16 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let < | Let <imath>(a_n)</imath> and <imath>(b_n)</imath> be the sequences of real numbers such that | ||
<cmath>\[ | <cmath>\[ | ||
(2 + i)^n = a_n + b_ni | (2 + i)^n = a_n + b_ni | ||
\]</cmath>for all integers < | \]</cmath>for all integers <imath>n\geq 0</imath>, where <imath>i = \sqrt{-1}</imath>. What is<cmath>\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?</cmath> | ||
< | <imath>\textbf{(A) }\frac 38\qquad\textbf{(B) }\frac7{16}\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac9{16}\qquad\textbf{(E) }\frac47</imath> | ||
== Solution 1 == | == Solution 1 == | ||
| Line 12: | Line 12: | ||
(3 + 4i)^n = (a_n + b_ni)^2 = (a_n^2 - b_n^2) + 2a_nb_ni, | (3 + 4i)^n = (a_n + b_ni)^2 = (a_n^2 - b_n^2) + 2a_nb_ni, | ||
</cmath> | </cmath> | ||
so < | so <imath>a_nb_n = \tfrac12\operatorname{Im}((3+4i)^n)</imath> and | ||
<cmath> | <cmath> | ||
\sum_{n\geq 0}\frac{a_nb_n}{7^n} = \frac12\operatorname{Im}\left(\sum_{n\geq 0}\frac{(3+4i)^n}{7^n}\right) = \frac12\operatorname{Im}\left(\frac{1}{1 - \frac{3 + 4i}7}\right) = \boxed{\frac 7{16}}. | \sum_{n\geq 0}\frac{a_nb_n}{7^n} = \frac12\operatorname{Im}\left(\sum_{n\geq 0}\frac{(3+4i)^n}{7^n}\right) = \frac12\operatorname{Im}\left(\frac{1}{1 - \frac{3 + 4i}7}\right) = \boxed{\frac 7{16}}. | ||
| Line 18: | Line 18: | ||
== Solution 2 (DeMoivre's Formula) == | == Solution 2 (DeMoivre's Formula) == | ||
Note that < | Note that <imath>(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)</imath>. Let <imath>\theta = \arctan (1/2)</imath>, then, we know that <cmath>(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right),</cmath> so <cmath>(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n.</cmath> Therefore, | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
\sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\ | \sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\ | ||
&=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\ | &=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\ | ||
&=\frac{1}{2} \ | &=\frac{1}{2} \operatorname{Im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right). | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Aha! < | Aha! <imath>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </imath> is a geometric sequence that evaluates to <imath>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</imath>! Now we can quickly see that <cmath>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5},</cmath> <cmath>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}.</cmath> Therefore, <cmath>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i.</cmath> The imaginary part is <imath>\frac{7}{8}</imath>, so our answer is <imath>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}} \Rightarrow \textbf{(B)}</imath>. | ||
~AopsUser101 | ~AopsUser101 | ||
== Solution 3 == | == Solution 3 == | ||
Clearly < | Clearly <imath>a_n=\frac{(2+i)^n+(2-i)^n}{2}, b_n=\frac{(2+i)^n-(2-i)^n}{2i}</imath>. So we have <imath>\sum_{n\ge 0}\frac{a_nb_n}{7^n}=\sum_{n\ge 0}\frac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</imath>. By linearity, we have the latter is equivalent to <imath>\frac{1}{4i}\sum_{n\ge 0}\frac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</imath>. Expanding the summand yields | ||
\begin{align*} | |||
\ | \frac{1}{4i}\sum_{n\ge 0}\frac{(3+4i)^n-(3-4i)^n}{7^n}&=\frac{1}{4}[\frac{1}{1-(\frac{3+4i}{7})}-\frac{1}{1-(\frac{3-4i}{7})}] \\ | ||
&=\ | &=\frac{1}{4i}[\frac{7}{7-(3+4i)}-\frac{7}{7-(3-4i)}] \\ | ||
&=\ | &=\frac{1}{4}[\frac{7}{4-4i}-\frac{7}{4+4i}] \\ | ||
&=\ | &=\frac{1}{4i}[\frac{7(4+4i)}{32}-\frac{7(4-4i)}{32}]=\frac{1}{4}\cdot \frac{56}{32} \\ | ||
&=\boxed{\ | &=\boxed{\frac{7}{16}}\textbf{(B)} | ||
\end{align*} | \end{align*} | ||
-vsamc | -vsamc | ||
== Video Solution by Richard Rusczyk == | == Video Solution 1 by Richard Rusczyk == | ||
https://www.youtube.com/watch?v=OdSTfCDOh5A | https://www.youtube.com/watch?v=OdSTfCDOh5A | ||
==Video Solution 2 by StressedPineapple== | |||
https://youtube.com/watch?v=NWBPm3lThH4&t=952s | |||
== See Also == | == See Also == | ||
{{AMC12 box|year=2020|ab=A|num-b=21|num-a=23}} | {{AMC12 box|year=2020|ab=A|num-b=21|num-a=23}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 01:34, 8 November 2025
Problem
Let
and
be the sequences of real numbers such that
for all integers
, where
. What is
Solution 1
Square the given equality to yield
so
and
Solution 2 (DeMoivre's Formula)
Note that
. Let
, then, we know that
so
Therefore,
Aha!
is a geometric sequence that evaluates to
! Now we can quickly see that
Therefore,
The imaginary part is
, so our answer is
.
~AopsUser101
Solution 3
Clearly
. So we have
. By linearity, we have the latter is equivalent to
. Expanding the summand yields
\begin{align*}
\frac{1}{4i}\sum_{n\ge 0}\frac{(3+4i)^n-(3-4i)^n}{7^n}&=\frac{1}{4}[\frac{1}{1-(\frac{3+4i}{7})}-\frac{1}{1-(\frac{3-4i}{7})}] \\
&=\frac{1}{4i}[\frac{7}{7-(3+4i)}-\frac{7}{7-(3-4i)}] \\
&=\frac{1}{4}[\frac{7}{4-4i}-\frac{7}{4+4i}] \\
&=\frac{1}{4i}[\frac{7(4+4i)}{32}-\frac{7(4-4i)}{32}]=\frac{1}{4}\cdot \frac{56}{32} \\
&=\boxed{\frac{7}{16}}\textbf{(B)}
\end{align*}
-vsamc
Video Solution 1 by Richard Rusczyk
https://www.youtube.com/watch?v=OdSTfCDOh5A
Video Solution 2 by StressedPineapple
https://youtube.com/watch?v=NWBPm3lThH4&t=952s
See Also
| 2020 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 21 |
Followed by Problem 23 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America.