Art of Problem Solving

2014 AMC 10B Problems/Problem 2: Difference between revisions

Lolgod2 (talk | contribs)
Thestudyofeverything (talk | contribs)
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:


==Solution 1==
==Solution 1==
We can synchronously multiply <math> {2^3} </math> to the polynomials both above and below the fraction bar. Thus,  
We can synchronously multiply <math> {2^3} </math> to the expresions both above and below the fraction bar. Thus,  
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}. </cmath>
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}. </cmath>
Hence, the fraction equals to <math>\boxed{{\textbf{(E) }64}}</math>.
Hence, the fraction equals to <math>\boxed{{\textbf{(E) }64}}</math>.
Line 12: Line 12:
We have  
We have  
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,</cmath> so our answer is <math>\boxed{{(\textbf{E) }64}}</math>.
<cmath>\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,</cmath> so our answer is <math>\boxed{{(\textbf{E) }64}}</math>.
==Video Solution (CREATIVE THINKING)==
https://youtu.be/NwWf1uYFZqw
~Education, the Study of Everything


==Video Solution==
==Video Solution==

Latest revision as of 11:05, 2 July 2023

Problem

What is $\frac{2^3 + 2^3}{2^{-3} + 2^{-3}}$?

$\textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64$

Solution 1

We can synchronously multiply ${2^3}$ to the expresions both above and below the fraction bar. Thus, \[\frac{2^3+2^3}{2^{-3}+2^{-3}}\\=\frac{2^6+2^6}{1+1}\\={2^6}.\] Hence, the fraction equals to $\boxed{{\textbf{(E) }64}}$.

Solution 2

We have \[\frac{2^3+2^3}{2^{-3}+2^{-3}} = \frac{8 + 8}{\frac{1}{8} + \frac{1}{8}} = \frac{16}{\frac{1}{4}} = 16 \cdot 4 = 64,\] so our answer is $\boxed{{(\textbf{E) }64}}$.

Video Solution (CREATIVE THINKING)

https://youtu.be/NwWf1uYFZqw

~Education, the Study of Everything


Video Solution

https://youtu.be/vLFULrT_7yk

~savannahsolver

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.