Art of Problem Solving

2021 AMC 10B Problems/Problem 2: Difference between revisions

Bjc (talk | contribs)
No edit summary
Pinotation (talk | contribs)
 
(44 intermediate revisions by 23 users not shown)
Line 1: Line 1:
==Problem==
==Problem==
What is the value of <cmath>\sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}?</cmath>
What is the value of <math>\sqrt{\left(3-2\sqrt{3}\right)^2}+\sqrt{\left(3+2\sqrt{3}\right)^2}</math>?


<math>\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6</math>
<math>\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6</math>


==Solution==
==Solution 1==
Note that the square root of a squared number is the absolute value of the number.
Note that the square root of any number squared is always the absolute value of the squared number because the square root function will only return a nonnegative number. By squaring both <math>3</math> and <math>2\sqrt{3}</math>, we see that <math>2\sqrt{3}>3</math>, thus <math>3-2\sqrt{3}</math> is negative, so we must take the absolute value of <math>3-2\sqrt{3}</math>, which is just <math>2\sqrt{3}-3</math>. Knowing this, the first term in the expression equals <math>2\sqrt{3}-3</math> and the second term is <math>3+2\sqrt3</math>, and summing the two gives <math>\boxed{\textbf{(D)} ~4\sqrt{3}}</math>.
So the first term equals <math>2\sqrt{3}-3</math> and the second term is <math>3+2\sqrt3</math>
 
Summed up you get <math>\boxed{\textbf{(D)} ~4\sqrt{3}}</math> ~bjc
~bjc, abhinavg0627 and JackBocresion
<math>\phantom{Sorry whoever's solution I overrided, the problem should have \sqrt{3} not \sqrt{2}}</math>
 
==Solution 2==
Let <math>x = \sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}</math>, then <math>x^2 = (3-2\sqrt{3})^2+2\sqrt{(-3)^2}+(3+2\sqrt3)^2</math>. The <math>2\sqrt{(-3)^2}</math> term is there due to difference of squares when you simplify <math>2ab</math> from <math>(a + b)^2</math>. Simplifying the expression gives us <math>x^2 = 48</math>, so <math>x=\boxed{\textbf{(D)} ~4\sqrt{3}}</math> ~ shrungpatel
 
==Solution 3 (Memorizing Roots)==
 
Memorizing your square roots from 1 - 10 are really important for cheesing some AMC problems, so try to memorize them.
 
\( \sqrt{3} \) is about 1.7.
 
We then substitute \( \sqrt{3} \) for 1.7 to solve this.
 
We get
 
<cmath>
\sqrt{(3-2 \cdot 1.7)^2} + \sqrt{(3+2 \cdot 1.7)^2}
</cmath>
 
<cmath>
= \sqrt{(-0.4)^2} + \sqrt{(6.4)^2}
</cmath>
 
<cmath>
= \sqrt{0.16} + \sqrt{6.4^2}
</cmath>
 
<cmath>
= 0.4 + 6.4
</cmath>
 
<cmath>
= 6.8
</cmath>
 
Looking at the answer choices, we see that <math>\boxed{\textbf{(D)} ~4\sqrt{3}}</math> gives <math>6.8</math> for when \( \sqrt{3} = 1.7 \).
 
~Pinotation
 
==Video Solution==
https://youtu.be/HHVdPTLQsLc
~Math Python
 
==Video Solution (EASY TO UNDERSTAND📈)==
https://www.youtube.com/watch?v=A1Li_jciTZY
 
~CalculaCore
 
== Video Solution by OmegaLearn ==
https://youtu.be/Df3AIGD78xM
 
~pi_is_3.14
 
==Video Solution==
https://youtu.be/v71C6cFbErQ
 
~savannahsolver
 
==Video Solution by TheBeautyofMath==
https://youtu.be/gLahuINjRzU?t=154
 
~IceMatrix
 
==Video Solution by Interstigation==
https://youtu.be/DvpN56Ob6Zw?t=1
 
~Interstigation
 
==Video Solution by Mathematical Dexterity (50 Seconds)==
https://www.youtube.com/watch?v=ScZ5VK7QTpY
 
==Video Solution==
https://youtu.be/3GHD62FK0xY
 
~Education, the Study of Everything
 
==See Also==
{{AMC10 box|year=2021|ab=B|num-b=1|num-a=3}}
{{MAA Notice}}

Latest revision as of 13:55, 5 September 2025

Problem

What is the value of $\sqrt{\left(3-2\sqrt{3}\right)^2}+\sqrt{\left(3+2\sqrt{3}\right)^2}$?

$\textbf{(A)} ~0 \qquad\textbf{(B)} ~4\sqrt{3}-6 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~4\sqrt{3} \qquad\textbf{(E)} ~4\sqrt{3}+6$

Solution 1

Note that the square root of any number squared is always the absolute value of the squared number because the square root function will only return a nonnegative number. By squaring both $3$ and $2\sqrt{3}$, we see that $2\sqrt{3}>3$, thus $3-2\sqrt{3}$ is negative, so we must take the absolute value of $3-2\sqrt{3}$, which is just $2\sqrt{3}-3$. Knowing this, the first term in the expression equals $2\sqrt{3}-3$ and the second term is $3+2\sqrt3$, and summing the two gives $\boxed{\textbf{(D)} ~4\sqrt{3}}$.

~bjc, abhinavg0627 and JackBocresion

Solution 2

Let $x = \sqrt{(3-2\sqrt{3})^2}+\sqrt{(3+2\sqrt{3})^2}$, then $x^2 = (3-2\sqrt{3})^2+2\sqrt{(-3)^2}+(3+2\sqrt3)^2$. The $2\sqrt{(-3)^2}$ term is there due to difference of squares when you simplify $2ab$ from $(a + b)^2$. Simplifying the expression gives us $x^2 = 48$, so $x=\boxed{\textbf{(D)} ~4\sqrt{3}}$ ~ shrungpatel

Solution 3 (Memorizing Roots)

Memorizing your square roots from 1 - 10 are really important for cheesing some AMC problems, so try to memorize them.

\( \sqrt{3} \) is about 1.7.

We then substitute \( \sqrt{3} \) for 1.7 to solve this.

We get

\[\sqrt{(3-2 \cdot 1.7)^2} + \sqrt{(3+2 \cdot 1.7)^2}\]

\[= \sqrt{(-0.4)^2} + \sqrt{(6.4)^2}\]

\[= \sqrt{0.16} + \sqrt{6.4^2}\]

\[= 0.4 + 6.4\]

\[= 6.8\]

Looking at the answer choices, we see that $\boxed{\textbf{(D)} ~4\sqrt{3}}$ gives $6.8$ for when \( \sqrt{3} = 1.7 \).

~Pinotation

Video Solution

https://youtu.be/HHVdPTLQsLc ~Math Python

Video Solution (EASY TO UNDERSTAND📈)

https://www.youtube.com/watch?v=A1Li_jciTZY

~CalculaCore

Video Solution by OmegaLearn

https://youtu.be/Df3AIGD78xM

~pi_is_3.14

Video Solution

https://youtu.be/v71C6cFbErQ

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/gLahuINjRzU?t=154

~IceMatrix

Video Solution by Interstigation

https://youtu.be/DvpN56Ob6Zw?t=1

~Interstigation

Video Solution by Mathematical Dexterity (50 Seconds)

https://www.youtube.com/watch?v=ScZ5VK7QTpY

Video Solution

https://youtu.be/3GHD62FK0xY

~Education, the Study of Everything

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.