2020 AMC 10A Problems/Problem 1: Difference between revisions
MRENTHUSIASM (talk | contribs) |
|||
| (21 intermediate revisions by 10 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
What value of <math>x</math> satisfies <cmath>x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?</cmath> | What value of <math>x</math> satisfies | ||
<cmath>x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?</cmath> | |||
<math>\textbf{(A)}\ {-}\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}</math> | |||
== Solution 1 == | |||
== Solution == | Adding <math>\frac{3}{4}</math> to both sides, <math>x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\textbf{(E) }\frac{5}{6}}</math>. | ||
==Solution 2== | |||
Multiplying <math>12</math> on both sides gets us <math>12x-9=1 \Rightarrow 12x=10</math>, therefore <math>x=\boxed{\textbf{(E)}~\frac{5}{6}}</math>. | |||
==Video Solution 1== | |||
Education, The Study of Everything | |||
https://youtu.be/4lsmGWDYusk | |||
https://youtu.be/ | |||
==Video Solution 2== | |||
~IceMatrix | ~IceMatrix | ||
https://youtu.be/WUcbVNy2uv0 | |||
==Video Solution 3== | |||
https://www.youtube.com/watch?v=7-3sl1pSojc | https://www.youtube.com/watch?v=7-3sl1pSojc | ||
~bobthefam | ~bobthefam | ||
==Video Solution 4== | |||
https://youtu.be/OKoBg15l8ro | |||
~savannahsolve | |||
== See Also == | == See Also == | ||
Latest revision as of 01:03, 11 November 2024
Problem
What value of
satisfies
Solution 1
Adding
to both sides,
.
Solution 2
Multiplying
on both sides gets us
, therefore
.
Video Solution 1
Education, The Study of Everything
Video Solution 2
~IceMatrix https://youtu.be/WUcbVNy2uv0
Video Solution 3
https://www.youtube.com/watch?v=7-3sl1pSojc
~bobthefam
Video Solution 4
~savannahsolve
See Also
| 2020 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by First Problem |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America.