Art of Problem Solving

1963 AHSME Problems/Problem 40: Difference between revisions

Gamathboy (talk | contribs)
 
(6 intermediate revisions by 3 users not shown)
Line 21: Line 21:
==Solution 2==
==Solution 2==
<math>\sqrt[3]{x+9}-\sqrt[3]{x-9}-3=0</math> i.e, <math>\sqrt[3]{x+9}+\sqrt[3]{-x+9}+(-3)=0</math>
<math>\sqrt[3]{x+9}-\sqrt[3]{x-9}-3=0</math> i.e, <math>\sqrt[3]{x+9}+\sqrt[3]{-x+9}+(-3)=0</math>
  if the sum of three numbers is zero, then their sum of cubes is thrice the product of each number.
if the sum of three numbers is zero, then their sum of cubes is thrice the product of each number.
  then, <math>x+9-x+9+27=3(\sqrt[3]{x+9})(\sqrt[3]{9-x})(3)</math> . by solving this, we get <math>-9=-9\sqrt[3]{9^2-x^2}</math>
  then, <math>x+9-x+9+27=3(\sqrt[3]{x+9})(\sqrt[3]{9-x})(-3)</math> . by solving this, we get <math>-9=-9\sqrt[3]{9^2-x^2}</math>
  <math>x^2=80</math>. this gives the step what we had done in solution 1.The answer is <math>\boxed{\textbf{(C)}}</math>.
  <math>x^2=80</math>. this gives the step what we had done in solution 1.The answer is <math>\boxed{\textbf{(C)}}</math>.
==Solution 3==
Cubing both sides, we get
<cmath>x+9-3\sqrt[3]{(x+9)^2(x-9)}+3\sqrt[3]{(x+9)(x-9)^2}-x+9=27,</cmath>so <cmath>18-3\sqrt[3]{(x-9)(x+9)}(\sqrt[3]{x+9}-\sqrt[3]{x-9})=27\implies 3\sqrt[3]{x^2-81}=-3.</cmath> Dividing both sides by 3 and cubing, we find <math>x^2=80</math>, which is between <math>\boxed{(C)75\text{ and }85}</math>.
~pfalcon
==Solution 4==
We consider the formula <math>(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3</math>. Factoring out <math>3ab</math>, and the commutative property gives <math>( 
a^3 - b^3) - 3ab(a-b)</math>. Cubing both sides gives us
<cmath>(\sqrt[3]{x+9}-\sqrt[3]{x-9})^3=27</cmath>
Using our formula, we have
<cmath>18 - 9 \sqrt[3]{x^2 - 81} = 27</cmath>
Solving this gives <math>x^2 = 80</math>, therefore, the answer is <math>\boxed{\textbf{(C)}}</math>.
~zixuan12


==See Also==
==See Also==

Latest revision as of 13:03, 26 March 2023

Problem

If $x$ is a number satisfying the equation $\sqrt[3]{x+9}-\sqrt[3]{x-9}=3$, then $x^2$ is between:

$\textbf{(A)}\ 55\text{ and }65\qquad \textbf{(B)}\ 65\text{ and }75\qquad \textbf{(C)}\ 75\text{ and }85\qquad \textbf{(D)}\ 85\text{ and }95\qquad \textbf{(E)}\ 95\text{ and }105$

Solution 1

Let $a = \sqrt[3]{x + 9}$ and $b = \sqrt[3]{x - 9}$. Cubing these equations, we get $a^3 = x + 9$ and $b^3 = x - 9$, so $a^3 - b^3 = 18$. The left-hand side factors as \[(a - b)(a^2 + ab + b^2) = 18.\]

However, from the given equation $\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3$, we get $a - b = 3$. Then $3(a^2 + ab + b^2) = 18$, so $a^2 + ab + b^2 = 18/3 = 6$.

Squaring the equation $a - b = 3$, we get $a^2 - 2ab + b^2 = 9$. Subtracting this equation from the equation $a^2 + ab + b^2 = 6$, we get $3ab = -3$, so $ab = -1$. But $a = \sqrt[3]{x + 9}$ and $b = \sqrt[3]{x - 9}$, so $ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}$, so $\sqrt[3]{x^2 - 81} = -1$. Cubing both sides, we get $x^2 - 81 = -1$, so $x^2 = 80$. The answer is $\boxed{\textbf{(C)}}$.


Solution 2

$\sqrt[3]{x+9}-\sqrt[3]{x-9}-3=0$ i.e, $\sqrt[3]{x+9}+\sqrt[3]{-x+9}+(-3)=0$

if the sum of three numbers is zero, then their sum of cubes is thrice the product of each number.
then, $x+9-x+9+27=3(\sqrt[3]{x+9})(\sqrt[3]{9-x})(-3)$ . by solving this, we get $-9=-9\sqrt[3]{9^2-x^2}$
$x^2=80$. this gives the step what we had done in solution 1.The answer is $\boxed{\textbf{(C)}}$.

Solution 3

Cubing both sides, we get \[x+9-3\sqrt[3]{(x+9)^2(x-9)}+3\sqrt[3]{(x+9)(x-9)^2}-x+9=27,\]so \[18-3\sqrt[3]{(x-9)(x+9)}(\sqrt[3]{x+9}-\sqrt[3]{x-9})=27\implies 3\sqrt[3]{x^2-81}=-3.\] Dividing both sides by 3 and cubing, we find $x^2=80$, which is between $\boxed{(C)75\text{ and }85}$.

~pfalcon

Solution 4

We consider the formula $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$. Factoring out $3ab$, and the commutative property gives $(   a^3 - b^3) - 3ab(a-b)$. Cubing both sides gives us \[(\sqrt[3]{x+9}-\sqrt[3]{x-9})^3=27\] Using our formula, we have \[18 - 9 \sqrt[3]{x^2 - 81} = 27\] Solving this gives $x^2 = 80$, therefore, the answer is $\boxed{\textbf{(C)}}$. ~zixuan12

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 39
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America.