|
|
| (3 intermediate revisions by 3 users not shown) |
| Line 1: |
Line 1: |
| == Problem == | | == Problem == |
| If <math>\Alpha=\frac{1-cos\theta}{sin\theta}</math> and <math>\Beta=\frac{1-sin\theta}{cos\theta}</math>, prove that | | If <math>\text{A} =\frac{1-\cos\theta}{\sin\theta}</math> and <math>\text{B}=\frac{1-\sin\theta}{\cos\theta}</math>, prove that |
| <math>\frac{\Alpha^2}{(1+\Alpha^2)^2} + \frac{\Beta^2}{(1+\Beta^2)^2} = \frac{1}{4}</math>. | | <math>\frac{\text{A}^2}{\left( 1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} = \frac{1}{4}</math>. |
|
| |
|
|
| |
|
| == Solution ==
| |
| <math>\frac{\Alpha}{1+\Alpha^2} = \frac{\frac{1-cos\theta}{sin\theta}}{1+(\frac{1- cos\theta}{sin\theta})^2} = \frac{\frac{1-cos\theta}{sin\theta}}{\frac{sin^2\theta+ cos^2\theta-2cos\theta+1}{sin^2\theta}} = \frac{\frac{1-cos\theta}{sin\theta}}{\frac{2(1-cos\theta)}{sin^2\theta}} = \frac{sin\theta}{2}</math>
| |
|
| |
| Similarly <math>\frac{\Beta}{1+\Beta^2} = \frac{cos\theta}{2}</math>
| |
|
| |
| So <math>\frac{\Alpha^2}{(1+\Alpha^2)^2} + \frac{\Beta^2}{(1+\Beta^2)^2} = \frac{sin^2\theta}{2^2} + \frac{cos^2\theta}{2^2}= \frac{1}{4}</math>
| |
|
| |
|
| ---- | | ---- |