1960 AHSME Problems/Problem 15: Difference between revisions
Rockmanex3 (talk | contribs) |
Rockmanex3 (talk | contribs) mNo edit summary |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 4: | Line 4: | ||
Triangle <math>II</math> is equilateral with side <math>a</math>, perimeter <math>p</math>, area <math>k</math>, and circumradius <math>r</math>. If <math>A</math> is different from <math>a</math>, then: | Triangle <math>II</math> is equilateral with side <math>a</math>, perimeter <math>p</math>, area <math>k</math>, and circumradius <math>r</math>. If <math>A</math> is different from <math>a</math>, then: | ||
<math>\textbf{(A)}\ P:p = R:r \text{ } \text{only sometimes} \qquad | <math>\textbf{(A)}\ P:p = R:r \text{ } \text{only sometimes} \qquad \\ | ||
\textbf{(B)}\ P:p = R:r \text{ } \text{always}\qquad \\ | \textbf{(B)}\ P:p = R:r \text{ } \text{always}\qquad \\ | ||
\textbf{(C)}\ P:p = K:k \text{ } \text{only sometimes} \qquad | \textbf{(C)}\ P:p = K:k \text{ } \text{only sometimes} \qquad \\ | ||
\textbf{(D)}\ R:r = K:k \text{ } \text{always}\qquad | \textbf{(D)}\ R:r = K:k \text{ } \text{always}\qquad \\ | ||
\textbf{(E)}\ R:r = K:k \text{ } \text{only sometimes} </math> | \textbf{(E)}\ R:r = K:k \text{ } \text{only sometimes} </math> | ||
| Line 21: | Line 21: | ||
</asy> | </asy> | ||
First, find <math>P</math>, <math>K</math>, and <math>R</math> in terms of <math>A</math>. Since all sides of equilateral triangle are the same, <math>P=3A</math>. From the area formula, <math>K=\frac{A^2\sqrt{3}}{4}</math>. By using 30-60-90 triangles, <math>R=\frac{A\sqrt{3}}{3}</math>. | First, find <math>P</math>, <math>K</math>, and <math>R</math> in terms of <math>A</math>. Since all sides of an [[equilateral triangle]] are the same, <math>P=3A</math>. From the area formula, <math>K=\frac{A^2\sqrt{3}}{4}</math>. By using 30-60-90 triangles, <math>R=\frac{A\sqrt{3}}{3}</math>. | ||
Using the same steps, <math>p=3a</math>, <math>k=\frac{a^2\sqrt{3}}{4}</math>, and <math>r=\frac{a\sqrt{3}}{3}</math>. | Using the same steps, <math>p=3a</math>, <math>k=\frac{a^2\sqrt{3}}{4}</math>, and <math>r=\frac{a\sqrt{3}}{3}</math>. | ||
Note that <math>P/p = 3A/3a = A/a</math> and <math>R/r = \frac{A\sqrt{3}}{3} \div \frac{a\sqrt{3}}{3} = A/a</math>. That means <math>P/p = R/r</math>, so the answer is <math>\boxed{\textbf{(B)}}</math> | Note that <math>P/p = 3A/3a = A/a</math> and <math>R/r = \frac{A\sqrt{3}}{3} \div \frac{a\sqrt{3}}{3} = A/a</math>. That means <math>P/p = R/r</math>, so the answer is <math>\boxed{\textbf{(B)}}</math>. | ||
==See Also== | ==See Also== | ||
{{AHSME 40p box|year=1960|num-b=14|num-a=16}} | {{AHSME 40p box|year=1960|num-b=14|num-a=16}} | ||
[[Category:Introductory Geometry Problems]] | |||
Latest revision as of 18:01, 17 May 2018
Problem
Triangle
is equilateral with side
, perimeter
, area
, and circumradius
(radius of the circumscribed circle).
Triangle
is equilateral with side
, perimeter
, area
, and circumradius
. If
is different from
, then:
Solution
First, find
,
, and
in terms of
. Since all sides of an equilateral triangle are the same,
. From the area formula,
. By using 30-60-90 triangles,
.
Using the same steps,
,
, and
.
Note that
and
. That means
, so the answer is
.
See Also
| 1960 AHSC (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Problem 16 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
| All AHSME Problems and Solutions | ||